Biological effects of exposure to static electric fields in humans and vertebrates: a systematic review.

Anne-Kathrin Petri, Kristina Schmiedchen, Dominik Stunder, Dagmar Dechent, Thomas Kraus, William H Bailey, Sarah Driessen
Author Information
  1. Anne-Kathrin Petri: Research Center for Bioelectromagnetic Interaction, RWTH Aachen University, Pauwelsstraße 30, 52074, Aachen, Germany. petri@femu.rwth-aachen.de.
  2. Kristina Schmiedchen: Research Center for Bioelectromagnetic Interaction, RWTH Aachen University, Pauwelsstraße 30, 52074, Aachen, Germany.
  3. Dominik Stunder: Research Center for Bioelectromagnetic Interaction, RWTH Aachen University, Pauwelsstraße 30, 52074, Aachen, Germany.
  4. Dagmar Dechent: Research Center for Bioelectromagnetic Interaction, RWTH Aachen University, Pauwelsstraße 30, 52074, Aachen, Germany.
  5. Thomas Kraus: Research Center for Bioelectromagnetic Interaction, RWTH Aachen University, Pauwelsstraße 30, 52074, Aachen, Germany.
  6. William H Bailey: Center for Occupational and Environmental Health Risk Assessment, Exponent, 17000 Science Drive, Suite 200, Bowie, MD, 20715, USA.
  7. Sarah Driessen: Research Center for Bioelectromagnetic Interaction, RWTH Aachen University, Pauwelsstraße 30, 52074, Aachen, Germany.

Abstract

BACKGROUND: High-voltage direct current (HVDC) lines are the technology of choice for the transport of large amounts of energy over long distances. The operation of these lines produces static electric fields (EF), but the data reviewed in previous assessments were not sufficient to assess the need for any environmental limit. The aim of this systematic review was to update the current state of research and to evaluate biological effects of static EF.
METHODS: Using the PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-analyses) recommendations, we collected and evaluated experimental and epidemiological studies examining biological effects of exposure to static EF in humans (n = 8) and vertebrates (n = 40).
RESULTS: There is good evidence that humans and animals are able to perceive the presence of static EF at sufficiently high levels. Hair movements caused by electrostatic forces may play a major role in this perception. A large number of studies reported responses of animals (e.g., altered metabolic, immunologic or developmental parameters) to a broad range of static EF strengths as well, but these responses are likely secondary physiological responses to sensory stimulation. Furthermore, the quality of many of the studies reporting physiological responses is poor, which raises concerns about confounding.
CONCLUSION: The weight of the evidence from the literature reviewed did not indicate that static EF have adverse biological effects in humans or animals. The evidence strongly supported the role of superficial sensory stimulation of hair and skin as the basis for perception of the field, as well as reported indirect behavioral and physiological responses. Physical considerations also preclude any direct effect of static EF on internal physiology, and reports that some physiological processes are affected in minor ways may be explained by other factors. While this literature does not support a level of concern about biological effects of exposure to static EF, the conditions that affect thresholds for human detection and possible annoyance at suprathreshold levels should be investigated.

Keywords

References

  1. IARC Monogr Eval Carcinog Risks Hum. 2002;80:1-395 [PMID: 12071196]
  2. Indian J Biochem Biophys. 1996 Dec;33(6):531-3 [PMID: 9219442]
  3. Bioelectromagnetics. 1985;6(4):415-25 [PMID: 3836681]
  4. IEEE Trans Biomed Eng. 1981 Jun;28(6):453-9 [PMID: 7287043]
  5. Bioelectromagnetics. 1981;2(4):403-6 [PMID: 7326061]
  6. Gen Physiol Biophys. 2006 Jun;25(2):177-93 [PMID: 16917131]
  7. Bioelectromagnetics. 1990;11(4):273-82 [PMID: 2285413]
  8. IEEE Trans Biomed Eng. 2004 Aug;51(8):1460-8 [PMID: 15311833]
  9. Bioelectromagnetics. 2000 Dec;21(8):575-83 [PMID: 11102947]
  10. Health Phys. 2009 Apr;96(4):504-14 [PMID: 19276710]
  11. Bioelectromagnetics. 2005 Jul;26(5):357-66 [PMID: 15887251]
  12. PLoS Med. 2009 Jul 21;6(7):e1000097 [PMID: 19621072]
  13. Scand J Work Environ Health. 2001 Apr;27(2):140-5 [PMID: 11409597]
  14. J Gerontol. 1986 Mar;41(2):147-53 [PMID: 3950339]
  15. BMC Psychiatry. 2013 Jan 15;13:29 [PMID: 23320516]
  16. Z Biol. 1970 Jun;116(5):363-70 [PMID: 5534762]
  17. Experientia. 1974 Nov 15;30(11):1274-5 [PMID: 4140104]
  18. Bioelectromagnetics. 1986;7(4):395-404 [PMID: 3801063]
  19. Bioelectromagnetics. 2014 Feb;35(2):79-90 [PMID: 24375548]
  20. Am J Public Health. 1984 Jan;74(1):76-8 [PMID: 6689848]
  21. Bioelectromagnetics. 2006 Oct;27(7):589-92 [PMID: 16838271]
  22. J Negat Results Biomed. 2013 Sep 09;12:14 [PMID: 24016271]
  23. Physiol Chem Phys. 1978;10(1):79-85 [PMID: 569338]
  24. Z Immunitatsforsch Exp Klin Immunol. 1973 Sep;145(5):404-12 [PMID: 4282958]
  25. J Med Syst. 2005 Dec;29(6):679-708 [PMID: 16235821]
  26. Int J Biometeorol. 1973 Sep;17(3):221-5 [PMID: 4756235]
  27. Z Biol. 1970 Jun;116(5):354-63 [PMID: 5518440]
  28. Arch Hyg Bakteriol. 1970;154(4):378-86 [PMID: 5525076]
  29. Environ Health Perspect. 2014 Jul;122(7):711-8 [PMID: 24755067]
  30. Bioelectromagnetics. 1986;7(3):329-39 [PMID: 3753535]
  31. Ann N Y Acad Sci. 1974;238:436-44 [PMID: 4531272]
  32. Vet Res Commun. 1986 Jul;10(4):245-68 [PMID: 3526705]
  33. Bioelectromagnetics. 1995;16(6):396-401 discussion 402-6 [PMID: 8789071]
  34. Health Phys. 2007 Jun;92(6):584-90 [PMID: 17495659]
  35. Int J Biometeorol. 1985 Sep;29(3):269-83 [PMID: 4055126]
  36. Bioelectromagnetics. 1987;8(2):173-81 [PMID: 2441706]
  37. Int J Biometeorol. 1985 Sep;29(3):253-68 [PMID: 4055125]
  38. Int J Biometeorol. 1969 Jun;13(1):39-49 [PMID: 5383469]
  39. Aerosp Med. 1964 Jan;35:20-3 [PMID: 14101889]
  40. Int J Environ Res Public Health. 2015 Jun 30;12(7):7348-56 [PMID: 26133127]
  41. Bioelectromagnetics. 1993;14(4):341-52 [PMID: 8216386]
  42. Bioelectromagnetics. 1996;17(3):230-41 [PMID: 8809363]
  43. Biochemistry (Mosc). 1999 Nov;64(11):1279-82 [PMID: 10611533]
  44. Med Biol Eng Comput. 1999 Nov;37(6):727-32 [PMID: 10723879]
  45. Electromagn Biol Med. 2013 Mar;32(1):79-94 [PMID: 23046167]
  46. Eur Heart J. 2015 Jul 21;36(28):1798-804 [PMID: 25908772]
  47. Int J Biometeorol. 1974 Mar;18(1):46-56 [PMID: 4845144]
  48. Gen Physiol Biophys. 1996 Dec;15(6):429-40 [PMID: 9248829]
  49. Bioelectromagnetics. 1995;16(5):301-6 [PMID: 8554631]
  50. Arch Hyg Bakteriol. 1971 Jul;154(6):549-52 [PMID: 5569912]
  51. Bioengineered. 2016 Jul 3;7(4):241-5 [PMID: 27282242]
  52. Int J Biometeorol. 2016 Jan;60(1):99-111 [PMID: 25956806]
  53. Scand J Work Environ Health. 1995 Oct;21(5):335-44 [PMID: 8571089]

MeSH Term

Animals
Birds
Electric Wiring
Electromagnetic Fields
Environmental Exposure
Humans
Mammals

Word Cloud

Created with Highcharts 10.0.0staticEFeffectsresponsesbiologicalhumansphysiologicaldirectcurrentelectricfieldsstudiesexposureevidenceanimalsperceptionHigh-voltagelineslargereviewedsystematicreviewlevelsmayrolereportedwellsensorystimulationliteratureBiologicalBACKGROUND:HVDCtechnologychoicetransportamountsenergylongdistancesoperationproducesdatapreviousassessmentssufficientassessneedenvironmentallimitaimupdatestateresearchevaluateMETHODS:UsingPRISMAPreferredReportingItemsSystematicReviewsMeta-analysesrecommendationscollectedevaluatedexperimentalepidemiologicalexaminingn = 8vertebratesn = 40RESULTS:goodableperceivepresencesufficientlyhighHairmovementscausedelectrostaticforcesplaymajornumberegalteredmetabolicimmunologicdevelopmentalparametersbroadrangestrengthslikelysecondaryFurthermorequalitymanyreportingpoorraisesconcernsconfoundingCONCLUSION:weightindicateadversestronglysupportedsuperficialhairskinbasisfieldindirectbehavioralPhysicalconsiderationsalsoprecludeeffectinternalphysiologyreportsprocessesaffectedminorwaysexplainedfactorssupportlevelconcernconditionsaffectthresholdshumandetectionpossibleannoyancesuprathresholdinvestigatedvertebrates:ExposureFieldPhysiologicalfunctionsPowerlineStatic

Similar Articles

Cited By