Modulation of TMEM16A channel activity by the von Willebrand factor type A (VWA) domain of the calcium-activated chloride channel regulator 1 (CLCA1).

Monica Sala-Rabanal, Zeynep Yurtsever, Kayla N Berry, Colin G Nichols, Tom J Brett
Author Information
  1. Monica Sala-Rabanal: From the Center for the Investigation of Membrane Excitability Diseases.
  2. Zeynep Yurtsever: Biochemistry Program.
  3. Kayla N Berry: Department of Internal Medicine, Division of Pulmonary and Critical Care Medicine.
  4. Colin G Nichols: From the Center for the Investigation of Membrane Excitability Diseases.
  5. Tom J Brett: From the Center for the Investigation of Membrane Excitability Diseases, tbrett@wustl.edu. ORCID

Abstract

Calcium-activated chloride channels (CaCCs) are key players in transepithelial ion transport and fluid secretion, smooth muscle constriction, neuronal excitability, and cell proliferation. The CaCC regulator 1 (CLCA1) modulates the activity of the CaCC TMEM16A/Anoctamin 1 (ANO1) by directly engaging the channel at the cell surface, but the exact mechanism is unknown. Here we demonstrate that the von Willebrand factor type A (VWA) domain within the cleaved CLCA1 N-terminal fragment is necessary and sufficient for this interaction. TMEM16A protein levels on the cell surface were increased in HEK293T cells transfected with CLCA1 constructs containing the VWA domain, and TMEM16A-like currents were activated. Similar currents were evoked in cells exposed to secreted VWA domain alone, and these currents were significantly knocked down by TMEM16A siRNA. VWA-dependent TMEM16A modulation was not modified by the S357N mutation, a VWA domain polymorphism associated with more severe meconium ileus in cystic fibrosis patients. VWA-activated currents were significantly reduced in the absence of extracellular Mg, and mutation of residues within the conserved metal ion-dependent adhesion site motif impaired the ability of VWA to potentiate TMEM16A activity, suggesting that CLCA1-TMEM16A interactions are Mg- and metal ion-dependent adhesion site-dependent. Increase in TMEM16A activity occurred within minutes of exposure to CLCA1 or after a short treatment with nocodazole, consistent with the hypothesis that CLCA1 stabilizes TMEM16A at the cell surface by preventing its internalization. Our study hints at the therapeutic potential of the selective activation of TMEM16A by the CLCA1 VWA domain in loss-of-function chloride channelopathies such as cystic fibrosis.

Keywords

Associated Data

PDB | 4FX5

References

  1. Proc Natl Acad Sci U S A. 2014 Jun 17;111(24):8979-84 [PMID: 24889613]
  2. J Pediatr Gastroenterol Nutr. 2010 Mar;50(3):347-9 [PMID: 20179644]
  3. Science. 2015 Dec 18;350(6267):aad2395 [PMID: 26680202]
  4. Physiol Genomics. 2006 May 16;25(3):502-13 [PMID: 16569774]
  5. Proc Natl Acad Sci U S A. 2014 Apr 1;111(13):4862-7 [PMID: 24639528]
  6. Cell. 2008 Sep 19;134(6):1019-29 [PMID: 18805094]
  7. Am J Physiol Cell Physiol. 2007 Sep;293(3):C1129-38 [PMID: 17626240]
  8. Nat Protoc. 2015 Jun;10(6):845-58 [PMID: 25950237]
  9. Cell. 2015 Sep 24;163(1):17 [PMID: 26406363]
  10. J Biol Chem. 1994 Oct 21;269(42):26006-10 [PMID: 7523399]
  11. J Clin Invest. 2012 Dec;122(12):4555-68 [PMID: 23187130]
  12. J Cyst Fibros. 2015 Sep;14(5):561-70 [PMID: 26115565]
  13. J Mol Biol. 2015 Jan 16;427(1):94-105 [PMID: 25451786]
  14. J Physiol. 2016 Oct 1;594(19):5369-90 [PMID: 27273705]
  15. Nature. 2014 Dec 11;516(7530):207-12 [PMID: 25383531]
  16. Proc Natl Acad Sci U S A. 2012 Oct 2;109(40):16354-9 [PMID: 22988107]
  17. Physiol Rev. 2014 Apr;94(2):419-59 [PMID: 24692353]
  18. J Biol Chem. 2011 Jan 14;286(2):1381-8 [PMID: 21056985]
  19. Cell Calcium. 2007 Jan;41(1):27-40 [PMID: 16759698]
  20. Cell Calcium. 2009 Oct;46(4):233-41 [PMID: 19783045]
  21. J Biol Chem. 2005 Jul 22;280(29):27205-12 [PMID: 15919655]
  22. Nature. 2012 May 13;486(7401):122-5 [PMID: 22678293]
  23. J Physiol. 2012 Dec 1;590(23):6141-55 [PMID: 22988141]
  24. J Gen Physiol. 2016 Nov;148(5):367-373 [PMID: 27799317]
  25. J Physiol. 2008 Oct 15;586(20):4793-813 [PMID: 18755741]
  26. Proc Natl Acad Sci U S A. 2005 Aug 9;102(32):11230-5 [PMID: 16061813]
  27. J Biol Chem. 2012 Dec 7;287(50):42138-49 [PMID: 23112050]
  28. J Mol Biol. 2004 Aug 6;341(2):519-27 [PMID: 15276841]
  29. Gastroenterology. 2007 Dec;133(6):1928-37 [PMID: 18054564]
  30. Br J Pharmacol. 2014 Sep;171(18):4311-21 [PMID: 24834965]
  31. Nature. 2008 Oct 30;455(7217):1210-5 [PMID: 18724360]
  32. J Gen Physiol. 2016 Nov;148(5):375-392 [PMID: 27799318]
  33. Nat Rev Neurosci. 2012 Jul 18;13(8):542-55 [PMID: 22805911]
  34. Biochem J. 2014 Mar 1;458(2):365-74 [PMID: 24329154]
  35. J Biol Chem. 1991 Feb 15;266(5):3287-93 [PMID: 1847144]
  36. J Biol Chem. 1995 Dec 29;270(52):31016-26 [PMID: 8537359]
  37. Mediators Inflamm. 2015;2015:497387 [PMID: 26612971]
  38. Expert Rev Respir Med. 2015 Oct;9(5):503-6 [PMID: 26296094]
  39. Am J Physiol Cell Physiol. 2012 Dec 15;303(12):C1229-43 [PMID: 23034390]
  40. Science. 2008 Oct 24;322(5901):590-4 [PMID: 18772398]
  41. Elife. 2015 Mar 17;4:null [PMID: 25781344]
  42. Biochim Biophys Acta. 2013 Jul;1828(7):1541-9 [PMID: 23196350]
  43. Mol Biol Cell. 2002 Oct;13(10):3369-87 [PMID: 12388743]
  44. Proc Natl Acad Sci U S A. 2013 Nov 26;110(48):19354-9 [PMID: 24167264]
  45. J Physiol. 2009 May 15;587(Pt 10):2255-74 [PMID: 19307298]
  46. Proc Natl Acad Sci U S A. 2013 Apr 16;110(16):6352-7 [PMID: 23576756]
  47. Proc Natl Acad Sci U S A. 2010 Jan 26;107(4):1654-9 [PMID: 20080692]
  48. Acta Crystallogr D Biol Crystallogr. 2006 Oct;62(Pt 10):1243-50 [PMID: 17001101]
  49. Annu Rev Physiol. 2009;71:425-49 [PMID: 18954282]
  50. Circ Res. 2005 Aug 19;97(4):363-71 [PMID: 16051887]
  51. J Neurosci. 2015 Oct 28;35(43):14636-52 [PMID: 26511252]
  52. J Gen Physiol. 2016 Nov;148(5):393-404 [PMID: 27799319]
  53. Cell Calcium. 2012 Jan;51(1):22-30 [PMID: 22054663]
  54. Pharmacogenomics. 2016 Aug;17(13):1453-63 [PMID: 27490265]

Grants

  1. R01 HL119813/NHLBI NIH HHS
  2. T32 HL007317/NHLBI NIH HHS
  3. T32 GM007200/NIGMS NIH HHS
  4. R01 HL054171/NHLBI NIH HHS
  5. R35 HL140024/NHLBI NIH HHS

MeSH Term

Amino Acid Substitution
Anoctamin-1
Cell Line
Chloride Channels
Humans
Magnesium
Mutation, Missense
Neoplasm Proteins
Protein Domains
Protein Stability

Chemicals

ANO1 protein, human
Anoctamin-1
CLCA1 protein, human
Chloride Channels
Neoplasm Proteins
Magnesium

Word Cloud

Created with Highcharts 10.0.0TMEM16ACLCA1VWAchloridechanneldomaincell1activitycurrentsregulatorsurfacewithincysticfibrosismetalion-dependentadhesioncalcium-activatedCaCCvonWillebrandfactortypeinteractioncellssignificantlymutationsiteCalcium-activatedchannelsCaCCskeyplayerstransepithelialiontransportfluidsecretionsmoothmuscleconstrictionneuronalexcitabilityproliferationmodulatesTMEM16A/AnoctaminANO1directlyengagingexactmechanismunknowndemonstratecleavedN-terminalfragmentnecessarysufficientproteinlevelsincreasedHEK293TtransfectedconstructscontainingTMEM16A-likeactivatedSimilarevokedexposedsecretedaloneknockedsiRNAVWA-dependentmodulationmodifiedS357NpolymorphismassociatedseveremeconiumileuspatientsVWA-activatedreducedabsenceextracellularMgresiduesconservedmotifimpairedabilitypotentiatesuggestingCLCA1-TMEM16AinteractionsMg-site-dependentIncreaseoccurredminutesexposureshorttreatmentnocodazoleconsistenthypothesisstabilizespreventinginternalizationstudyhintstherapeuticpotentialselectiveactivationloss-of-functionchannelopathiesModulationdrugdevelopmentmagnesiumMIDASprotein-protein

Similar Articles

Cited By