Differential sensitivity to infections and antimicrobial peptide-mediated immune response in four silkworm strains with different geographical origin.
Ottavia Romoli, Alessio Saviane, Andrea Bozzato, Paola D'Antona, Gianluca Tettamanti, Andrea Squartini, Silvia Cappellozza, Federica Sandrelli
Author Information
Ottavia Romoli: Department of Biology, University of Padova, Padova, Italy.
Alessio Saviane: CREA - Honey Bee and Silkworm Research Unit, Padova Seat, Padova, Italy.
Andrea Bozzato: Department of Biology, University of Padova, Padova, Italy.
Paola D'Antona: Department of Biotechnology and Life Sciences, University of Insubria, Varese, Italy.
Gianluca Tettamanti: Department of Biotechnology and Life Sciences, University of Insubria, Varese, Italy. ORCID
Andrea Squartini: Department of Agronomy, Food, Natural Resources, Animals and Environment, University of Padova, Padova, Italy.
Silvia Cappellozza: CREA - Honey Bee and Silkworm Research Unit, Padova Seat, Padova, Italy.
Federica Sandrelli: Department of Biology, University of Padova, Padova, Italy. federica.sandrelli@unipd.it. ORCID
中文译文
English
The domesticated silkworm Bombyx mori has an innate immune system, whose main effectors are the antimicrobial peptides (AMPs). Silkworm strains are commonly grouped into four geographical types (Japanese, Chinese, European and Tropical) and are generally characterised by a variable susceptibility to infections. To clarify the genetic and molecular mechanisms on which the different responses to infections are based, we exposed one silkworm strain for each geographical area to oral infections with the silkworm pathogens Enterococcus mundtii or Serratia marcescens. We detected a differential susceptibility to both bacteria, with the European strain displaying the lowest sensitivity to E. mundtii and the Indian one to S. marcescens. We found that all the strains were able to activate the AMP response against E. mundtii. However, the highest tolerance of the European strain appeared to be related to the specific composition of its AMP cocktail, containing more effective variants such as a peculiar Cecropin B6 isoform. The resistance of the Indian strain to S. marcescens seemed to be associated with its prompt capability to activate the systemic transcription of AMPs. These data suggest that B. mori strains with distinct genetic backgrounds employ different strategies to counteract bacterial infections, whose efficacy appears to be pathogen-dependent.
Genetics. 2006 Nov;174(3):1539-54
[PMID: 16888344 ]
Immunol Rev. 2004 Apr;198:116-26
[PMID: 15199959 ]
Genomics. 2006 Mar;87(3):356-65
[PMID: 16406194 ]
J Insect Sci. 2012;12:40
[PMID: 22943524 ]
Annu Rev Immunol. 2012;30:271-94
[PMID: 22224770 ]
PLoS Genet. 2010 Jan;6(1):e1000797
[PMID: 20066029 ]
Infect Immun. 2014 Oct;82(10):4169-81
[PMID: 25047850 ]
Nucleic Acids Res. 2016 Jan 4;44(D1):D1087-93
[PMID: 26602694 ]
Science. 2008 Nov 21;322(5905):1257-9
[PMID: 19023083 ]
Annu Rev Entomol. 2005;50:71-100
[PMID: 15355234 ]
Methods. 2001 Dec;25(4):402-8
[PMID: 11846609 ]
Bioinformation. 2010 Sep 20;5(3):97-103
[PMID: 21364788 ]
PLoS One. 2011 Mar 29;6(3):e18109
[PMID: 21479226 ]
Bioinformatics. 2012 Jan 1;28(1):130-1
[PMID: 22053077 ]
Philos Trans R Soc Lond B Biol Sci. 2016 May 26;371(1695):
[PMID: 27160594 ]
Insect Mol Biol. 2002 Jun;11(3):257-65
[PMID: 12000645 ]
Dev Comp Immunol. 1999 Jun-Jul;23(4-5):329-44
[PMID: 10426426 ]
Neotrop Entomol. 2009 May-Jun;38(3):327-31
[PMID: 19618047 ]
Science. 2004 Mar 19;303(5665):1873-6
[PMID: 15031506 ]
Nucleic Acids Res. 2016 Jan 4;44(D1):D1094-7
[PMID: 26467475 ]
J Biol Chem. 2010 Sep 10;285(37):28635-42
[PMID: 20622022 ]
Front Microbiol. 2015 Jan 28;6:19
[PMID: 25674081 ]
Insect Biochem Mol Biol. 2008 Dec;38(12):1087-110
[PMID: 18835443 ]
Sci Rep. 2016 Sep 09;6:32939
[PMID: 27609527 ]
J Zhejiang Univ Sci B. 2015 Oct;16(10):875-82
[PMID: 26465135 ]
J Invertebr Pathol. 2011 Mar;106(3):386-93
[PMID: 21167172 ]
Antimicrob Agents Chemother. 1993 Aug;37(8):1614-9
[PMID: 8215272 ]
Science. 2009 Oct 16;326(5951):433-6
[PMID: 19713493 ]
J Immunol. 2014 Jul 15;193(2):773-82
[PMID: 24913976 ]
Nucleic Acids Res. 2001 May 1;29(9):e45
[PMID: 11328886 ]
Proc Natl Acad Sci U S A. 1995 Oct 10;92(21):9465-9
[PMID: 7568155 ]
FEBS J. 2015 Apr;282(8):1368-82
[PMID: 25688716 ]
BMC Biol. 2007 Dec 21;5:56
[PMID: 18154650 ]
J Biol Chem. 2014 Feb 28;289(9):5876-88
[PMID: 24398686 ]
Curr Biol. 2016 Jan 25;26(2):257-62
[PMID: 26776733 ]
BMC Genomics. 2010 Oct 09;11:549
[PMID: 20932328 ]
Open Biol. 2012 May;2(5):120075
[PMID: 22724070 ]
Trends Biotechnol. 2011 Sep;29(9):464-72
[PMID: 21680034 ]
J Biol Chem. 1995 Dec 15;270(50):29923-7
[PMID: 8530391 ]
Cell. 1996 Sep 20;86(6):973-83
[PMID: 8808632 ]
Insect Biochem Mol Biol. 2005 May;35(5):443-59
[PMID: 15804578 ]
Trends Immunol. 2009 Mar;30(3):131-41
[PMID: 19217824 ]
Nature. 2002 Apr 11;416(6881):640-4
[PMID: 11912488 ]
Nat Rev Immunol. 2014 Dec;14(12):796-810
[PMID: 25421701 ]
Biosci Biotechnol Biochem. 2008 Sep;72(9):2353-61
[PMID: 18776686 ]
PLoS One. 2013 Dec 30;8(12):e84137
[PMID: 24386341 ]
Front Physiol. 2013 Dec 17;4:375
[PMID: 24381562 ]
PLoS One. 2009 Dec 01;4(12):e8098
[PMID: 19956592 ]
PLoS Pathog. 2013;9(9):e1003601
[PMID: 24086131 ]
Nat Rev Immunol. 2007 Nov;7(11):862-74
[PMID: 17948019 ]
Nucleic Acids Res. 1997 Sep 1;25(17):3389-402
[PMID: 9254694 ]
Genes Dev. 2003 Jan 1;17(1):115-25
[PMID: 12514104 ]
Curr Biol. 2016 Jan 11;26(1):R14-9
[PMID: 26766224 ]
Animals
Anti-Infective Agents
Antimicrobial Cationic Peptides
Bacterial Infections
Bombyx
Disease Susceptibility
Enterococcus
Serratia marcescens
Anti-Infective Agents
Antimicrobial Cationic Peptides