Diversity and evolution of sex determination systems in terrestrial isopods.

Thomas Becking, Isabelle Giraud, Maryline Raimond, Bouziane Moumen, Christopher Chandler, Richard Cordaux, Clément Gilbert
Author Information
  1. Thomas Becking: Université de Poitiers, UMR CNRS 7267 Ecologie et Biologie des Interactions, Equipe Ecologie Evolution Symbiose, TSA 51106, 86073, Poitiers Cedex 9, France.
  2. Isabelle Giraud: Université de Poitiers, UMR CNRS 7267 Ecologie et Biologie des Interactions, Equipe Ecologie Evolution Symbiose, TSA 51106, 86073, Poitiers Cedex 9, France.
  3. Maryline Raimond: Université de Poitiers, UMR CNRS 7267 Ecologie et Biologie des Interactions, Equipe Ecologie Evolution Symbiose, TSA 51106, 86073, Poitiers Cedex 9, France.
  4. Bouziane Moumen: Université de Poitiers, UMR CNRS 7267 Ecologie et Biologie des Interactions, Equipe Ecologie Evolution Symbiose, TSA 51106, 86073, Poitiers Cedex 9, France.
  5. Christopher Chandler: Department of Biological Sciences, SUNY Oswego, Oswego, New York, 13126, USA.
  6. Richard Cordaux: Université de Poitiers, UMR CNRS 7267 Ecologie et Biologie des Interactions, Equipe Ecologie Evolution Symbiose, TSA 51106, 86073, Poitiers Cedex 9, France. richard.cordaux@univ-poitiers.fr.
  7. Clément Gilbert: Université de Poitiers, UMR CNRS 7267 Ecologie et Biologie des Interactions, Equipe Ecologie Evolution Symbiose, TSA 51106, 86073, Poitiers Cedex 9, France. clement.gilbert@univ-poitiers.fr.

Abstract

Sex determination systems are highly variable in many taxa, sometimes even between closely related species. Yet the number and direction of transitions between these systems have seldom been characterized, and the underlying mechanisms are still poorly understood. Here we generated transcriptomes for 19 species of terrestrial isopod crustaceans, many of which are infected by Wolbachia bacterial endosymbionts. Using 88 single-copy orthologous genes, we reconstructed a fully resolved and dated phylogeny of terrestrial isopods. An original approach involving crossings of sex-reversed individuals allowed us to characterize the heterogametic systems of five species (one XY/XX and four ZW/ZZ). Mapping of these and previously known heterogametic systems onto the terrestrial isopod phylogeny revealed between 3 and 13 transitions of sex determination systems during the evolution of these taxa, most frequently from female to male heterogamety. Our results support that WW individuals are viable in many species, suggesting sex chromosomes are at an incipient stage of their evolution. Together, these data are consistent with the hypothesis that nucleo-cytoplasmic conflicts generated by Wolbachia endosymbionts triggered recurrent turnovers of sex determination systems in terrestrial isopods. They further establish terrestrial isopods as a model to study evolutionary transitions in sex determination systems and pave the way to molecularly characterize these systems.

References

  1. Nat Rev Genet. 2013 Feb;14(2):113-24 [PMID: 23329112]
  2. G3 (Bethesda). 2015 Apr 24;5(7):1317-22 [PMID: 25911226]
  3. Mol Biol Evol. 2012 Aug;29(8):1969-73 [PMID: 22367748]
  4. Trends Genet. 2008 Jul;24(7):336-43 [PMID: 18514967]
  5. Nature. 2014 Nov 13;515(7526):261-3 [PMID: 25141177]
  6. Nature. 2014 Apr 24;508(7497):488-93 [PMID: 24759410]
  7. PeerJ. 2016 Oct 5;4:e2555 [PMID: 27761341]
  8. Proc Biol Sci. 1995 Jul 22;261(1360):55-63 [PMID: 7644549]
  9. PLoS Biol. 2014 Jul 01;12(7):e1001899 [PMID: 24983465]
  10. Mol Phylogenet Evol. 2010 Feb;54(2):640-6 [PMID: 19853050]
  11. J Struct Biol. 2008 Jul;163(1):100-8 [PMID: 18550385]
  12. PLoS Biol. 2015 Apr 16;13(4):e1002078 [PMID: 25879221]
  13. Syst Biol. 2007 Aug;56(4):564-77 [PMID: 17654362]
  14. Hereditas. 1983;98(2):201-7 [PMID: 6874390]
  15. Bioessays. 1995 Jan;17(1):71-7 [PMID: 7702596]
  16. Nat Methods. 2012 Jul 30;9(8):772 [PMID: 22847109]
  17. Zookeys. 2015 Jul 30;(515):13-25 [PMID: 26261437]
  18. BMC Evol Biol. 2006 Mar 16;6:24 [PMID: 16542456]
  19. Heredity (Edinb). 2001 Oct;87(Pt 4):428-34 [PMID: 11737290]
  20. Science. 2014 Oct 31;346(6209):646-50 [PMID: 25359977]
  21. Curr Genet. 1991 Aug;20(3):195-8 [PMID: 1657417]
  22. Trends Genet. 2011 Aug;27(8):332-41 [PMID: 21663992]
  23. Mol Biol Evol. 2013 Dec;30(12):2723-4 [PMID: 24105918]
  24. Science. 1993 Jul 16;261(5119):310-5 [PMID: 11536548]
  25. Nat Rev Microbiol. 2008 Oct;6(10):741-51 [PMID: 18794912]
  26. Bioinformatics. 2014 Aug 1;30(15):2114-20 [PMID: 24695404]
  27. Cold Spring Harb Perspect Biol. 2014 Oct 03;6(12):a017715 [PMID: 25280765]
  28. Proc Natl Acad Sci U S A. 2016 Dec 27;113(52):15036-15041 [PMID: 27930295]
  29. Annu Rev Genet. 2008;42:565-86 [PMID: 18983263]
  30. J Mol Evol. 2007 Dec;65(6):651-9 [PMID: 17906827]
  31. Cytogenet Genome Res. 2002;99(1-4):170-7 [PMID: 12900561]
  32. Genetics. 1996 Oct;144(2):587-95 [PMID: 8889522]
  33. Am Nat. 2002 Dec;160 Suppl 6:S214-24 [PMID: 18707478]
  34. Mol Biol Evol. 2007 Aug;24(8):1586-91 [PMID: 17483113]
  35. Proc Natl Acad Sci U S A. 2015 Aug 25;112(34):E4752-61 [PMID: 26216983]
  36. Heredity (Edinb). 2004 Jul;93(1):78-84 [PMID: 15138452]
  37. Nature. 2007 Oct 18;449(7164):909-12 [PMID: 17943130]
  38. Nucleic Acids Res. 2006 Jul 1;34(Web Server issue):W385-8 [PMID: 16845033]
  39. Evolution. 2012 Oct;66(10):3198-208 [PMID: 23025609]
  40. J Invertebr Pathol. 2014 Sep;121:28-36 [PMID: 24984056]
  41. BMC Genomics. 2013 Apr 23;14:273 [PMID: 23617698]
  42. Am Nat. 2014 Jan;183(1):140-6 [PMID: 24334743]
  43. Bioinformatics. 2012 Jun 15;28(12):1647-9 [PMID: 22543367]
  44. Mol Ecol. 2003 Feb;12(2):547-55 [PMID: 12535105]
  45. Curr Biol. 2012 Apr 24;22(8):R257-62 [PMID: 22537624]
  46. Genome Res. 2003 Sep;13(9):2178-89 [PMID: 12952885]
  47. Cytobios. 1980;29(113):17-24 [PMID: 7471810]
  48. Proc Biol Sci. 1998 Jun 22;265(1401):1081-90 [PMID: 9684374]
  49. J Hered. 2017 Jan;108(1):78-93 [PMID: 27543823]
  50. Cladistics. 2011 Apr;27(2):171-180 [PMID: 34875773]
  51. Science. 2006 Mar 24;311(5768):1727-30 [PMID: 16556832]
  52. C R Acad Sci III. 2000 Sep;323(9):827-37 [PMID: 11072627]
  53. Evolution. 2010 May;64(5):1301-10 [PMID: 19922444]
  54. Biol Lett. 2012 Dec 23;8(6):979-82 [PMID: 23054914]
  55. PLoS One. 2015 Jun 05;10(6):e0128660 [PMID: 26047139]
  56. J Bacteriol. 1998 May;180(9):2373-8 [PMID: 9573188]
  57. Nature. 2009 Oct 22;461(7267):1079-83 [PMID: 19783981]
  58. J Mol Evol. 1997 Jul;45(1):60-5 [PMID: 9211735]
  59. Science. 1993 Jun 11;260(5114):1629-32 [PMID: 8503007]
  60. Bioinformatics. 2006 Nov 1;22(21):2688-90 [PMID: 16928733]
  61. Mol Mar Biol Biotechnol. 1994 Oct;3(5):294-9 [PMID: 7881515]
  62. PLoS Biol. 2013;11(8):e1001643 [PMID: 24015111]
  63. Nat Protoc. 2013 Aug;8(8):1494-512 [PMID: 23845962]
  64. Science. 2007 Oct 5;318(5847):95-7 [PMID: 17916732]
  65. Annu Rev Genomics Hum Genet. 2011;12:391-406 [PMID: 21801024]
  66. J Mol Evol. 2012 Jun;74(5-6):310-8 [PMID: 22760646]
  67. Evolution. 2013 Mar;67(3):635-45 [PMID: 23461315]
  68. Zookeys. 2012;(176):123-31 [PMID: 22536103]
  69. Genome Biol Evol. 2011;3:230-5 [PMID: 21317157]
  70. Biol Bull. 1994 Aug;187(1):99-111 [PMID: 29281308]
  71. Mol Phylogenet Evol. 2001 Jan;18(1):54-65 [PMID: 11161742]
  72. BMC Bioinformatics. 2014 Nov 19;15:350 [PMID: 25407802]
  73. Genetics. 1993 Feb;133(2):247-52 [PMID: 8436273]
  74. Cytometry A. 2014 Oct;85(10):862-8 [PMID: 25139836]

MeSH Term

Animals
Evolution, Molecular
Gene Expression Profiling
Genetic Variation
Isopoda
Phylogeny
Sex Characteristics

Word Cloud

Created with Highcharts 10.0.0systemsterrestrialdeterminationsexspeciesisopodsmanytransitionsevolutiontaxageneratedisopodWolbachiaendosymbiontsphylogenyindividualscharacterizeheterogameticSexhighlyvariablesometimesevencloselyrelatedYetnumberdirectionseldomcharacterizedunderlyingmechanismsstillpoorlyunderstoodtranscriptomes19crustaceansinfectedbacterialUsing88single-copyorthologousgenesreconstructedfullyresolveddatedoriginalapproachinvolvingcrossingssex-reversedallowedusfiveoneXY/XXfourZW/ZZMappingpreviouslyknownontorevealed313frequentlyfemalemaleheterogametyresultssupportWWviablesuggestingchromosomesincipientstageTogetherdataconsistenthypothesisnucleo-cytoplasmicconflictstriggeredrecurrentturnoversestablishmodelstudyevolutionarypavewaymolecularlyDiversity

Similar Articles

Cited By