Functions of galectins as 'self/non-self'-recognition and effector factors.

Gerardo R Vasta, Chiguang Feng, Nuria González-Montalbán, Justin Mancini, Lishi Yang, Kelsey Abernathy, Graeme Frost, Cheyenne Palm
Author Information
  1. Gerardo R Vasta: Department of Microbiology and Immunology, University of Maryland School of Medicine, UMB, and Institute of Marine and Environmental Technology, Columbus Center, 701 East Pratt Street, Baltimore, MD 21202, USA.
  2. Chiguang Feng: Department of Microbiology and Immunology, University of Maryland School of Medicine, UMB, and Institute of Marine and Environmental Technology, Columbus Center, 701 East Pratt Street, Baltimore, MD 21202, USA.
  3. Nuria González-Montalbán: Department of Microbiology and Immunology, University of Maryland School of Medicine, UMB, and Institute of Marine and Environmental Technology, Columbus Center, 701 East Pratt Street, Baltimore, MD 21202, USA.
  4. Justin Mancini: Department of Microbiology and Immunology, University of Maryland School of Medicine, UMB, and Institute of Marine and Environmental Technology, Columbus Center, 701 East Pratt Street, Baltimore, MD 21202, USA.
  5. Lishi Yang: Department of Microbiology and Immunology, University of Maryland School of Medicine, UMB, and Institute of Marine and Environmental Technology, Columbus Center, 701 East Pratt Street, Baltimore, MD 21202, USA.
  6. Kelsey Abernathy: Department of Microbiology and Immunology, University of Maryland School of Medicine, UMB, and Institute of Marine and Environmental Technology, Columbus Center, 701 East Pratt Street, Baltimore, MD 21202, USA.
  7. Graeme Frost: Department of Microbiology and Immunology, University of Maryland School of Medicine, UMB, and Institute of Marine and Environmental Technology, Columbus Center, 701 East Pratt Street, Baltimore, MD 21202, USA.
  8. Cheyenne Palm: Department of Microbiology and Immunology, University of Maryland School of Medicine, UMB, and Institute of Marine and Environmental Technology, Columbus Center, 701 East Pratt Street, Baltimore, MD 21202, USA.

Abstract

carbohydrate structures on the cell surface encode complex information that through specific recognition by carbohydrate-binding proteins (lectins) modulates interactions between cells, cells and the extracellular matrix, or mediates recognition of potential microbial pathogens. Galectins are a family of ß-galactoside-binding lectins, which are evolutionary conserved and have been identified in most organisms, from fungi to invertebrates and vertebrates, including mammals. Since their discovery in the 1970s, their biological roles, initially understood as limited to recognition of endogenous carbohydrate ligands in embryogenesis and development, have expanded in recent years by the discovery of their roles in tissue repair and regulation of immune homeostasis. More recently, evidence has accumulated to support the notion that galectins can also bind glycans on the surface of potentially pathogenic microbes, and function as recognition and effector factors in innate immunity, thus establishing a new paradigm. Furthermore, some parasites 'subvert' the recognition roles of the vector/host galectins for successful attachment or invasion. These recent findings have revealed a striking functional diversification in this structurally conserved lectin family.

Keywords

References

  1. FEBS Lett. 2015 Nov 14;589(22):3407-18 [PMID: 26352298]
  2. Curr Opin Struct Biol. 2002 Oct;12(5):616-23 [PMID: 12464313]
  3. Immunogenetics. 2003 Nov;55(8):570-81 [PMID: 14530883]
  4. Adv Exp Med Biol. 2007;598:389-406 [PMID: 17892226]
  5. Rev Med Virol. 2015 May;25(3):175-86 [PMID: 25760439]
  6. Dev Biol. 2001 Jan 1;229(1):203-14 [PMID: 11133164]
  7. Clin Chim Acta. 2015 Mar 30;443:48-56 [PMID: 25446877]
  8. Cell. 2014 Feb 13;156(4):744-58 [PMID: 24529377]
  9. J Biol Chem. 2006 Jan 20;281(3):1698-713 [PMID: 16251191]
  10. J Biol Chem. 1993 Dec 25;268(36):27034-8 [PMID: 8262940]
  11. Glycobiology. 2002 Aug;12(8):451-61 [PMID: 12145186]
  12. Glycobiology. 1999 Apr;9(4):383-7 [PMID: 10089212]
  13. Mol Immunol. 2015 May;65(1):1-16 [PMID: 25597246]
  14. J Immunol. 2005 Jul 1;175(1):413-20 [PMID: 15972675]
  15. Glycobiology. 2001 May;11(5):71R-9R [PMID: 11425795]
  16. Transl Oncol. 2009 Aug 18;2(3):146-56 [PMID: 19701499]
  17. Glycobiology. 2004 Mar;14(3):293-300 [PMID: 14693909]
  18. Biomark Cancer. 2010 Feb 18;2:17-33 [PMID: 24179382]
  19. Biochemistry. 2015 Aug 4;54(30):4711-30 [PMID: 26158802]
  20. Adv Neurobiol. 2014;9:517-42 [PMID: 25151395]
  21. Nat Rev Immunol. 2004 May;4(5):325-35 [PMID: 15122198]
  22. J Immunol. 2007 Jan 1;178(1):436-45 [PMID: 17182582]
  23. J Immunol. 2007 Sep 1;179(5):3086-98 [PMID: 17709523]
  24. J Biol Chem. 2013 Aug 23;288(34):24410-28 [PMID: 23824194]
  25. Invest Ophthalmol Vis Sci. 2010 Jun;51(6):3244-52 [PMID: 20071673]
  26. Fish Shellfish Immunol. 2015 Sep;46(1):94-106 [PMID: 25982395]
  27. Science. 2002 Apr 12;296(5566):298-300 [PMID: 11951031]
  28. Cell. 2004 Oct 29;119(3):329-41 [PMID: 15543683]
  29. J Immunol. 2006 Jul 15;177(2):796-803 [PMID: 16818733]
  30. J Virol. 2006 Apr;80(7):3655-9 [PMID: 16537634]
  31. PLoS One. 2014 Nov 13;9(11):e112474 [PMID: 25392933]
  32. J Cell Biol. 1996 Jun;133(5):1017-26 [PMID: 8655575]
  33. J Virol. 2015 Mar;89(5):2520-9 [PMID: 25505064]
  34. Cell Mol Life Sci. 2007 Jul;64(13):1679-700 [PMID: 17497244]
  35. Ann N Y Acad Sci. 2012 Apr;1253:1-15 [PMID: 22524422]
  36. Proc Natl Acad Sci U S A. 1994 Feb 15;91(4):1428-32 [PMID: 8108426]
  37. Biochemistry. 2008 Aug 19;47(33):8470-6 [PMID: 18652478]
  38. Biochem Biophys Res Commun. 2008 Jul 4;371(3):350-5 [PMID: 18448074]
  39. Nat Med. 2007 Dec;13(12):1450-7 [PMID: 18026113]
  40. Adv Exp Med Biol. 2012;946:21-36 [PMID: 21948360]
  41. J Biol Chem. 1992 Apr 5;267(10):6983-90 [PMID: 1313027]
  42. Methods Mol Biol. 2015;1207:327-41 [PMID: 25253151]
  43. Ann N Y Acad Sci. 2012 Apr;1253:80-91 [PMID: 22329844]
  44. Biochim Biophys Acta. 2002 Sep 19;1572(2-3):209-31 [PMID: 12223271]
  45. Curr Opin Struct Biol. 2007 Oct;17(5):513-20 [PMID: 17950594]
  46. Glycoconj J. 2004;19(7-9):593-600 [PMID: 14758084]
  47. Glycobiology. 2010 Sep;20(9):1061-4 [PMID: 20548106]
  48. Glycobiology. 2006 May;16(5):402-14 [PMID: 16449348]
  49. J Histochem Cytochem. 2010 Jun;58(6):553-65 [PMID: 20197492]
  50. Genetics. 2015 Apr;199(4):905-18 [PMID: 25855651]
  51. J Cell Biol. 1991 Dec;115(5):1437-48 [PMID: 1955484]
  52. Mol Immunol. 2015 Dec;68(2 Pt A):194-202 [PMID: 26355912]
  53. J Biol Chem. 2013 Aug 23;288(34):24394-409 [PMID: 23824193]
  54. Glycoconj J. 2004;21(8-9):503-21 [PMID: 15750792]
  55. PLoS One. 2013;8(2):e57915 [PMID: 23451284]
  56. Glycoconj J. 2004;19(7-9):491-8 [PMID: 14758072]
  57. Glycobiology. 1993 Aug;3(4):297-304 [PMID: 8400545]
  58. J Biol Chem. 2005 Nov 18;280(46):38583-91 [PMID: 16166092]
  59. Ann N Y Acad Sci. 2012 Apr;1253:133-48 [PMID: 22524424]
  60. Fungal Genet Biol. 2005 Apr;42(4):293-305 [PMID: 15749049]
  61. Biochem Biophys Res Commun. 2007 Jun 22;358(1):241-6 [PMID: 17481580]
  62. J Biol Chem. 1998 May 22;273(21):13047-52 [PMID: 9582341]
  63. Ann N Y Acad Sci. 2012 Apr;1253:E14-26 [PMID: 22973821]
  64. Proc Natl Acad Sci U S A. 2011 Jun 28;108(26):10650-5 [PMID: 21670307]
  65. Proc Natl Acad Sci U S A. 2013 Mar 26;110(13):5052-7 [PMID: 23479624]
  66. Dev Comp Immunol. 2016 Feb;55:241-252 [PMID: 26429411]
  67. Proc Natl Acad Sci U S A. 2011 Nov 15;108(46):18696-701 [PMID: 21969596]
  68. J Biol Chem. 1998 Oct 30;273(44):28889-96 [PMID: 9786891]
  69. Proteins. 2000 Aug 15;40(3):378-88 [PMID: 10861929]
  70. Nat Struct Biol. 2002 Aug;9(8):628-34 [PMID: 12091873]
  71. Cell Microbiol. 2008 Oct;10(10):2078-90 [PMID: 18637021]
  72. PLoS One. 2014 Mar 11;9(3):e91794 [PMID: 24618590]
  73. J Virol. 2011 Oct;85(19):10010-20 [PMID: 21795357]
  74. Curr Opin Immunol. 2006 Feb;18(1):10-5 [PMID: 16343883]
  75. Eur J Biochem. 1997 Feb 1;243(3):543-76 [PMID: 9057819]
  76. Nat Med. 2010 Mar;16(3):295-301 [PMID: 20154696]
  77. Biochemistry. 1998 Apr 28;37(17):5867-77 [PMID: 9558320]
  78. Nat Rev Microbiol. 2009 Jun;7(6):424-38 [PMID: 19444247]
  79. Glycobiology. 2004 Mar;14(3):219-32 [PMID: 14693912]
  80. J Immunol. 2008 Mar 1;180(5):3091-102 [PMID: 18292532]
  81. Adipocyte. 2013 Oct 1;2(4):266-71 [PMID: 24052904]
  82. J Biol Chem. 2002 Apr 12;277(15):13091-8 [PMID: 11809773]

Grants

  1. T32 AI095190/NIAID NIH HHS
  2. R01 GM070589/NIGMS NIH HHS

MeSH Term

Animals
Galectins
Host-Pathogen Interactions
Humans
Immune Evasion
Immunity, Innate
Receptors, Immunologic

Chemicals

Galectins
Receptors, Immunologic

Word Cloud

Created with Highcharts 10.0.0recognitiongalectinsrolessurfacelectinscellsfamilyconserveddiscoverycarbohydraterecentglycansfunctioneffectorfactorsCarbohydratestructurescellencodecomplexinformationspecificcarbohydrate-bindingproteinsmodulatesinteractionsextracellularmatrixmediatespotentialmicrobialpathogensGalectinsß-galactoside-bindingevolutionaryidentifiedorganismsfungiinvertebratesvertebratesincludingmammalsSince1970sbiologicalinitiallyunderstoodlimitedendogenousligandsembryogenesisdevelopmentexpandedyearstissuerepairregulationimmunehomeostasisrecentlyevidenceaccumulatedsupportnotioncanalsobindpotentiallypathogenicmicrobesinnateimmunitythusestablishingnewparadigmFurthermoreparasites'subvert'vector/hostsuccessfulattachmentinvasionfindingsrevealedstrikingfunctionaldiversificationstructurallylectinFunctions'self/non-self'-recognitiondomain:chimeraß-galactosidepatternreceptorsproto-typestructuretandemrepeat

Similar Articles

Cited By (20)