Spine Enlargement of Pyramidal Tract-Type Neurons in the Motor Cortex of a Rat Model of Levodopa-Induced Dyskinesia.

Tatsuya Ueno, Haruo Nishijima, Shinya Ueno, Masahiko Tomiyama
Author Information
  1. Tatsuya Ueno: Department of Neurology, Aomori Prefectural Central HospitalAomori, Japan.
  2. Haruo Nishijima: Department of Neurology, Aomori Prefectural Central HospitalAomori, Japan.
  3. Shinya Ueno: Department of Neurophysiology, Hirosaki University Graduate School of MedicineHirosaki, Japan.
  4. Masahiko Tomiyama: Department of Neurology, Aomori Prefectural Central HospitalAomori, Japan.

Abstract

Growing evidence suggests that abnormal synaptic plasticity of cortical neurons underlies levodopa-induced dyskinesia (LID) in Parkinson's disease (PD). Spine morphology reflects synaptic plasticity resulting from glutamatergic transmission. We previously reported that enlargement of the dendritic spines of intratelencephalic-type (IT) neurons in the primary motor cortex (M1) is linked to the development of LID. However, the relevance of another M1 neuron type, pyramidal-tract (PT) neurons, to LID remains unknown. We examined the morphological changes of the dendritic spines of M1 PT neurons in a rat model of LID. We quantified the density and size of these spines in 6-hydroxydopamine-lesioned rats (a model of PD), 6-hydroxydopamine-lesioned rats chronically treated with levodopa (a model of LID), and control rats chronically treated with levodopa. Dopaminergic denervation alone had no effect on spine density and head area. However, the LID model showed significant increases in the density and spine head area and the development of dyskinetic movements. In contrast, levodopa treatment of normal rats increased spine density alone. Although, chronic levodopa treatment increases PT neuron spine density, with or without dopaminergic denervation, enlargement of PT neuron spines appears to be a specific feature of LID. This finding suggests that PT neurons become hyperexcited in the LID model, in parallel with the enlargement of spines. Thus, spine enlargement, and the resultant hyperexcitability of PT pyramidal neurons, in the M1 cortex might contribute to abnormal cortical neuronal plasticity in LID.

Keywords

References

  1. Eur J Neurosci. 2010 Jun;31(12):2178-84 [PMID: 20550565]
  2. Neurosci Lett. 2011 Sep 15;502(2):117-22 [PMID: 21835223]
  3. Neurology. 1985 Aug;35(8):1215-8 [PMID: 4022359]
  4. PLoS One. 2009 Sep 17;4(9):e7082 [PMID: 19759902]
  5. Trends Neurosci. 2010 Mar;33(3):121-9 [PMID: 20138375]
  6. Int J Nanomedicine. 2012;7:2077-86 [PMID: 22619544]
  7. J Neurol Neurosurg Psychiatry. 1988 Jun;51(6):745-52 [PMID: 2841426]
  8. Neurobiol Dis. 2016 Feb;86:1-15 [PMID: 26586558]
  9. Brain Res. 1999 Jan 30;817(1-2):185-91 [PMID: 9889362]
  10. Brain Struct Funct. 2017 Mar;222(2):669-706 [PMID: 27412682]
  11. Lancet Neurol. 2006 Aug;5(8):677-87 [PMID: 16857573]
  12. Front Syst Neurosci. 2015 Apr 14;9:51 [PMID: 25926776]
  13. J Neurosci. 2012 Nov 21;32(47):16541-51 [PMID: 23175810]
  14. Trends Neurosci. 2012 Feb;35(2):135-43 [PMID: 22222350]
  15. Neurobiol Dis. 2011 Feb;41(2):585-90 [PMID: 21092759]
  16. Nature. 2004 Jun 17;429(6993):761-6 [PMID: 15190253]
  17. Front Neural Circuits. 2014 Jun 05;8:54 [PMID: 24926234]
  18. Curr Protoc Neurosci. 2007 Oct;Chapter 9:Unit 9.25 [PMID: 18428668]
  19. Nat Neurosci. 2001 Nov;4(11):1086-92 [PMID: 11687814]
  20. Brain Res. 2015 Sep 24;1621:17-28 [PMID: 25498985]
  21. Restor Neurol Neurosci. 2007;25(2):91-9 [PMID: 17726267]
  22. J Neurophysiol. 2014 Jul 1;112(1):120-46 [PMID: 24598515]
  23. Nat Neurosci. 2013 Jun;16(6):665-7 [PMID: 23666180]
  24. J Neurosci. 2012 Aug 1;32(31):10516-21 [PMID: 22855801]
  25. Science. 2014 Sep 26;345(6204):1616-20 [PMID: 25258080]
  26. Mov Disord. 2014 Mar;29(3):336-43 [PMID: 24573720]
  27. Bone Marrow Transplant. 2013 Mar;48(3):452-8 [PMID: 23208313]
  28. Sci Rep. 2014 Dec 16;4:7506 [PMID: 25511986]
  29. Neurobiol Dis. 2014 Apr;64:142-9 [PMID: 24398173]
  30. Neuropsychopharmacology. 2008 May;33(6):1276-86 [PMID: 17687264]
  31. Neuron. 2015 Nov 18;88(4):762-73 [PMID: 26590347]
  32. Front Neuroanat. 2010 Oct 25;4:142 [PMID: 21088706]
  33. J Neurosci. 2011 Feb 16;31(7):2481-7 [PMID: 21325515]
  34. J Neurosci. 2012 Apr 4;32(14):4959-71 [PMID: 22492051]
  35. Nature. 2007 Dec 20;450(7173):1195-200 [PMID: 18097401]
  36. Brain. 2011 Aug;134(Pt 8):2312-20 [PMID: 21742734]
  37. Drug Des Devel Ther. 2012;6:341-7 [PMID: 23185117]
  38. Nat Neurosci. 2003 May;6(5):501-6 [PMID: 12665799]
  39. Nat Neurosci. 2015 Sep;18(9):1299-309 [PMID: 26237365]

Word Cloud

Created with Highcharts 10.0.0LIDneuronsspinesPTmodeldensitylevodopaspineplasticityenlargementM1neuronratsdendriticcortexsuggestsabnormalsynapticcorticaldyskinesiaParkinson'sdiseasePDSpinemotordevelopmentHowever6-hydroxydopamine-lesionedchronicallytreateddenervationaloneheadareaincreasestreatmentpyramidalGrowingevidenceunderlieslevodopa-inducedmorphologyreflectsresultingglutamatergictransmissionpreviouslyreportedintratelencephalic-typeITprimarylinkedrelevanceanothertypepyramidal-tractremainsunknownexaminedmorphologicalchangesratquantifiedsizecontrolDopaminergiceffectshowedsignificantdyskineticmovementscontrastnormalincreasedAlthoughchronicwithoutdopaminergicappearsspecificfeaturefindingbecomehyperexcitedparallelThusresultanthyperexcitabilitymightcontributeneuronalEnlargementPyramidalTract-TypeNeuronsMotorCortexRatModelLevodopa-InducedDyskinesia6-hydroxydopamine

Similar Articles

Cited By