Mercury-induced epigenetic transgenerational inheritance of abnormal neurobehavior is correlated with sperm epimutations in zebrafish.

Michael J Carvan, Thomas A Kalluvila, Rebekah H Klingler, Jeremy K Larson, Matthew Pickens, Francisco X Mora-Zamorano, Victoria P Connaughton, Ingrid Sadler-Riggleman, Daniel Beck, Michael K Skinner
Author Information
  1. Michael J Carvan: School of Freshwater Sciences, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin, United States of America.
  2. Thomas A Kalluvila: School of Freshwater Sciences, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin, United States of America.
  3. Rebekah H Klingler: School of Freshwater Sciences, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin, United States of America.
  4. Jeremy K Larson: School of Freshwater Sciences, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin, United States of America.
  5. Matthew Pickens: School of Freshwater Sciences, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin, United States of America.
  6. Francisco X Mora-Zamorano: School of Freshwater Sciences, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin, United States of America.
  7. Victoria P Connaughton: Department of Biology, American University,Washington, DC, United States of America.
  8. Ingrid Sadler-Riggleman: Center for Reproductive Biology, School of Biological Sciences, Washington State University, Pullman, WA, United States of America.
  9. Daniel Beck: Center for Reproductive Biology, School of Biological Sciences, Washington State University, Pullman, WA, United States of America.
  10. Michael K Skinner: Center for Reproductive Biology, School of Biological Sciences, Washington State University, Pullman, WA, United States of America.

Abstract

Methylmercury (MeHg) is a ubiquitous environmental neurotoxicant, with human exposures predominantly resulting from fish consumption. Developmental exposure of zebrafish to MeHg is known to alter their neurobehavior. The current study investigated the direct exposure and transgenerational effects of MeHg, at tissue doses similar to those detected in exposed human populations, on sperm epimutations (i.e., differential DNA methylation regions [DMRs]) and neurobehavior (i.e., visual startle and spontaneous locomotion) in zebrafish, an established human health model. F0 generation embryos were exposed to MeHg (0, 1, 3, 10, 30, and 100 nM) for 24 hours ex vivo. F0 generation control and MeHg-exposed lineages were reared to adults and bred to yield the F1 generation, which was subsequently bred to the F2 generation. Direct exposure (F0 generation) and transgenerational actions (F2 generation) were then evaluated. Hyperactivity and visual deficit were observed in the unexposed descendants (F2 generation) of the MeHg-exposed lineage compared to control. An increase in F2 generation sperm epimutations was observed relative to the F0 generation. Investigation of the DMRs in the F2 generation MeHg-exposed lineage sperm revealed associated genes in the neuroactive ligand-receptor interaction and actin-cytoskeleton pathways being effected, which correlate to the observed neurobehavioral phenotypes. Developmental MeHg-induced epigenetic transgenerational inheritance of abnormal neurobehavior is correlated with sperm epimutations in F2 generation adult zebrafish. Therefore, mercury can promote the epigenetic transgenerational inheritance of disease in zebrafish, which significantly impacts its environmental health considerations in all species including humans.

References

  1. Zebrafish. 2016 Oct;13(5):413-23 [PMID: 27618130]
  2. Mol Cell Endocrinol. 2014 Dec;398(1-2):4-12 [PMID: 25088466]
  3. Nucleic Acids Res. 2000 Jan 1;28(1):27-30 [PMID: 10592173]
  4. Nat Methods. 2012 Mar 04;9(4):357-9 [PMID: 22388286]
  5. Bioinformatics. 2010 Jan 1;26(1):139-40 [PMID: 19910308]
  6. Int J Epidemiol. 2015 Aug;44(4):1249-62 [PMID: 25906783]
  7. Environ Sci Technol. 2004 Aug 1;38(15):4085-90 [PMID: 15352445]
  8. Mol Cell Endocrinol. 2014 Dec;398(1-2):36-41 [PMID: 25194296]
  9. Toxicol Sci. 2014 Apr;138(2):403-11 [PMID: 24470537]
  10. Environ Sci Pollut Res Int. 2015 Nov;22(21):16262-76 [PMID: 25172464]
  11. Proc Natl Acad Sci U S A. 2007 Dec 18;104(51):20421-6 [PMID: 18077390]
  12. Neurotoxicol Teratol. 2016 Jan-Feb;53:19-23 [PMID: 26561945]
  13. Science. 2005 Jun 3;308(5727):1466-9 [PMID: 15933200]
  14. Vis Neurosci. 1998 Sep-Oct;15(5):851-7 [PMID: 9764527]
  15. Sci Total Environ. 2006 Sep 1;368(1):271-82 [PMID: 16226794]
  16. Methods Cell Sci. 2003;25(1-2):49-58 [PMID: 14739587]
  17. Environ Toxicol Chem. 2013 Nov;32(11):2630-6 [PMID: 23939924]
  18. Arch Environ Occup Health. 2015;70(5):297-302 [PMID: 24971622]
  19. Environ Sci Pollut Res Int. 2015 Nov;22(21):16371-83 [PMID: 25639250]
  20. J Trace Elem Med Biol. 2014 Apr;28(2):117-24 [PMID: 24210169]
  21. Curr Environ Health Rep. 2015 Jun;2(2):179-94 [PMID: 26231367]
  22. Sci Total Environ. 2016 Feb 1;543(Pt A):187-96 [PMID: 26580741]
  23. Curr Neurovasc Res. 2007 May;4(2):111-20 [PMID: 17504209]
  24. Epigenetics. 2011 Jul;6(7):838-42 [PMID: 21637037]
  25. Aquat Toxicol. 2014 Mar;148:16-26 [PMID: 24440964]
  26. Bioinformatics. 2009 Aug 15;25(16):2078-9 [PMID: 19505943]
  27. Bull World Health Organ. 2014 Apr 1;92(4):254-269F [PMID: 24700993]
  28. Environ Health Perspect. 2012 Oct;120(10):1456-61 [PMID: 23008274]
  29. Arch Environ Occup Health. 2016 May 3;71(3):170-7 [PMID: 26267674]
  30. Toxicol Sci. 2012 Dec;130(2):383-90 [PMID: 22918959]
  31. Microb Ecol. 2003 Nov;46(4):429-41 [PMID: 14502415]
  32. Environ Pollut. 2015 Nov;206:667-78 [PMID: 26322593]
  33. Neurotoxicol Teratol. 2010 Mar-Apr;32(2):246-55 [PMID: 19800969]
  34. Dev Biol. 1999 Feb 15;206(2):189-205 [PMID: 9986732]
  35. Eur J Neurosci. 1998 Apr;10(4):1350-62 [PMID: 9749789]
  36. Bioinformatics. 2014 Jan 15;30(2):284-6 [PMID: 24227674]
  37. PLoS Genet. 2010 Dec 23;6(12):e1001252 [PMID: 21203497]
  38. Int J Hyg Environ Health. 2014 Sep;217(7):758-64 [PMID: 24780236]
  39. PLoS One. 2015 Nov 16;10(11):e0142274 [PMID: 26571271]
  40. PLoS One. 2010 Sep 30;5(9):null [PMID: 20927350]
  41. Physiol Behav. 2008 Jan 28;93(1-2):250-60 [PMID: 17905328]
  42. Genetics. 2014 Nov;198(3):1291-308 [PMID: 25233988]
  43. Environ Sci Process Impacts. 2014;16(10):2415-22 [PMID: 25162456]
  44. Sci Total Environ. 2009 Dec 20;408(2):272-6 [PMID: 19878970]
  45. Nat Protoc. 2013 Aug;8(8):1551-66 [PMID: 23868073]
  46. Nat Protoc. 2009;4(8):1184-91 [PMID: 19617889]
  47. Environ Health. 2014 Aug 02;13:62 [PMID: 25086599]
  48. Nucleic Acids Res. 2015 Jan;43(Database issue):D662-9 [PMID: 25352552]
  49. BMC Genomics. 2014 Aug 20;15:692 [PMID: 25142051]
  50. J Exp Biol. 2015 Jan 1;218(Pt 1):114-22 [PMID: 25568458]
  51. Environ Sci Technol. 2016 May 3;50(9):4808-16 [PMID: 27023211]
  52. J Physiol. 2000 Apr 1;524 Pt 1:135-46 [PMID: 10747188]
  53. Nat Protoc. 2009;4(1):44-57 [PMID: 19131956]
  54. PLoS One. 2016 Apr 28;11(4):e0154570 [PMID: 27123921]
  55. Epigenetics. 2015;10(8):762-71 [PMID: 26237076]
  56. Environ Health Perspect. 2006 Feb;114(2):173-5 [PMID: 16451850]
  57. Environ Sci Technol. 2002 Jun 1;36(11):2303-10 [PMID: 12075781]
  58. Nat Rev Genet. 2007 Apr;8(4):253-62 [PMID: 17363974]
  59. Genome Biol. 2012 Oct 03;13(10 ):R91 [PMID: 23034163]
  60. Nucleic Acids Res. 2014 Jan;42(Database issue):D199-205 [PMID: 24214961]
  61. Environ Mol Mutagen. 2013 Apr;54(3):195-203 [PMID: 23444121]

Grants

  1. R01 ES012974/NIEHS NIH HHS
  2. R21 ES019104/NIEHS NIH HHS

MeSH Term

Animals
Behavior, Animal
DNA Methylation
Epigenesis, Genetic
Locomotion
Male
Methylmercury Compounds
Mutation
Reflex, Startle
Retina
Spermatozoa
Zebrafish

Chemicals

Methylmercury Compounds

Word Cloud

Created with Highcharts 10.0.0generationF2zebrafishtransgenerationalspermMeHgneurobehaviorepimutationsF0humanexposureMeHg-exposedobservedepigeneticinheritanceenvironmentalDevelopmentalexposedievisualhealthcontrolbredlineageabnormalcorrelatedMethylmercuryubiquitousneurotoxicantexposurespredominantlyresultingfishconsumptionknownaltercurrentstudyinvestigateddirecteffectstissuedosessimilardetectedpopulationsdifferentialDNAmethylationregions[DMRs]startlespontaneouslocomotionestablishedmodelembryos0131030100nM24hoursexvivolineagesrearedadultsyieldF1subsequentlyDirectactionsevaluatedHyperactivitydeficitunexposeddescendantscomparedincreaserelativeInvestigationDMRsrevealedassociatedgenesneuroactiveligand-receptorinteractionactin-cytoskeletonpathwayseffectedcorrelateneurobehavioralphenotypesMeHg-inducedadultThereforemercurycanpromotediseasesignificantlyimpactsconsiderationsspeciesincludinghumansMercury-induced

Similar Articles

Cited By