Widespread Allelic Heterogeneity in Complex Traits.

Farhad Hormozdiari, Anthony Zhu, Gleb Kichaev, Chelsea J-T Ju, Ayellet V Segrè, Jong Wha J Joo, Hyejung Won, Sriram Sankararaman, Bogdan Pasaniuc, Sagiv Shifman, Eleazar Eskin
Author Information
  1. Farhad Hormozdiari: Department of Computer Science, University of California, Los Angeles, CA 90095, USA; Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA.
  2. Anthony Zhu: Department of Computer Science, University of California, Los Angeles, CA 90095, USA.
  3. Gleb Kichaev: Bioinformatics IDP, University of California, Los Angeles, CA 90095, USA.
  4. Chelsea J-T Ju: Department of Computer Science, University of California, Los Angeles, CA 90095, USA.
  5. Ayellet V Segrè: Cancer Program, The Broad Institute of Massachusetts Institute of Technology and Harvard University, Cambridge, MA 02142, USA.
  6. Jong Wha J Joo: Department of Computer Science, University of California, Los Angeles, CA 90095, USA; Department of Computer Science Engineering, Dongguk University-Seoul, 04620 Seoul, South Korea.
  7. Hyejung Won: Neurogenetics Program, Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA.
  8. Sriram Sankararaman: Department of Computer Science, University of California, Los Angeles, CA 90095, USA; Department of Human Genetics, University of California, Los Angeles, CA 90095, USA.
  9. Bogdan Pasaniuc: Department of Human Genetics, University of California, Los Angeles, CA 90095, USA; Department of Pathology and Laboratory Medicine, University of California, Los Angeles, CA 90095, USA.
  10. Sagiv Shifman: Department of Genetics, The Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem 91904, Israel. Electronic address: sagiv@vms.huji.ac.il.
  11. Eleazar Eskin: Department of Computer Science, University of California, Los Angeles, CA 90095, USA; Department of Human Genetics, University of California, Los Angeles, CA 90095, USA. Electronic address: eeskin@cs.ucla.edu.

Abstract

Recent successes in genome-wide association studies (GWASs) make it possible to address important questions about the genetic architecture of complex traits, such as allele frequency and effect size. One lesser-known aspect of complex traits is the extent of allelic heterogeneity (AH) arising from multiple causal variants at a locus. We developed a computational method to infer the probability of AH and applied it to three GWASs and four expression quantitative trait loci (eQTL) datasets. We identified a total of 4,152 loci with strong evidence of AH. The proportion of all loci with identified AH is 4%-23% in eQTLs, 35% in GWASs of high-density lipoprotein (HDL), and 23% in GWASs of schizophrenia. For eQTLs, we observed a strong correlation between sample size and the proportion of loci with AH (R = 0.85, p = 2.2 × 10), indicating that statistical power prevents identification of AH in other loci. Understanding the extent of AH may guide the development of new methods for fine mapping and association mapping of complex traits.

Keywords

References

  1. Hum Mol Genet. 2012 Jun 15;21(12):2815-24 [PMID: 22403184]
  2. Genome Res. 2008 Apr;18(4):653-60 [PMID: 18353808]
  3. Genetics. 2011 Jun;188(2):449-60 [PMID: 21467568]
  4. Bioinformatics. 2014 Oct 15;30(20):2906-14 [PMID: 24990607]
  5. Bioinformatics. 2012 Jun 15;28(12):i147-53 [PMID: 22689754]
  6. Nat Genet. 2010 Apr;42(4):348-54 [PMID: 20208533]
  7. Nat Genet. 2012 Dec;44(12):1294-301 [PMID: 23104008]
  8. Science. 2012 Sep 7;337(6099):1190-5 [PMID: 22955828]
  9. Nature. 2009 Oct 8;461(7265):747-53 [PMID: 19812666]
  10. Nat Genet. 2015 Mar;47(3):284-90 [PMID: 25642633]
  11. PLoS Genet. 2007 Jul;3(7):e114 [PMID: 17676998]
  12. Nature. 2012 Nov 1;491(7422):56-65 [PMID: 23128226]
  13. Nat Genet. 2009 Jun;41(6):703-7 [PMID: 19430480]
  14. Sci Rep. 2015 Nov 25;5:16923 [PMID: 26603754]
  15. Bioinformatics. 2015 Jun 15;31(12):i206-13 [PMID: 26072484]
  16. Nature. 2010 Oct 28;467(7319):1061-73 [PMID: 20981092]
  17. Nat Genet. 2013 Oct;45(10):1238-1243 [PMID: 24013639]
  18. Nature. 2010 Sep 2;467(7311):52-8 [PMID: 20811451]
  19. PLoS Genet. 2011 Feb 03;7(2):e1002003 [PMID: 21304890]
  20. Genetics. 2014 Oct;198(2):497-508 [PMID: 25104515]
  21. Nat Genet. 2012 Mar 18;44(4):369-75, S1-3 [PMID: 22426310]
  22. Proc Natl Acad Sci U S A. 2009 Jun 9;106(23):9362-7 [PMID: 19474294]
  23. Bioinformatics. 2011 Aug 15;27(16):2304-5 [PMID: 21653516]
  24. Hum Mol Genet. 2017 Apr 15;26(8):1444-1451 [PMID: 28165122]
  25. PLoS Genet. 2014 May 15;10(5):e1004383 [PMID: 24830394]
  26. Nature. 2014 Jul 24;511(7510):421-7 [PMID: 25056061]
  27. Nat Genet. 2012 Jun 17;44(7):821-4 [PMID: 22706312]
  28. Nat Methods. 2011 Sep 04;8(10):833-5 [PMID: 21892150]
  29. Hum Mutat. 2002 Mar;19(3):225-33 [PMID: 11857738]
  30. Nature. 2014 Oct 2;514(7520):E3-5 [PMID: 25279928]
  31. Nature. 2012 Sep 6;489(7414):57-74 [PMID: 22955616]
  32. Genome Biol. 2016 Apr 01;17:62 [PMID: 27039378]
  33. Am J Hum Genet. 2013 Nov 7;93(5):779-97 [PMID: 24210251]
  34. Nature. 2010 Aug 5;466(7307):707-13 [PMID: 20686565]
  35. Nature. 2013 Sep 26;501(7468):506-11 [PMID: 24037378]
  36. Nature. 2014 Apr 10;508(7495):249-53 [PMID: 24572353]
  37. Nature. 2007 Jun 7;447(7145):661-78 [PMID: 17554300]
  38. Genetics. 2008 Mar;178(3):1709-23 [PMID: 18385116]
  39. Am J Hum Genet. 2010 Jan;86(1):23-33 [PMID: 20085711]
  40. Genetics. 2011 May;188(1):181-8 [PMID: 21368279]
  41. Hum Mutat. 1997;10(2):135-54 [PMID: 9259197]
  42. PLoS Genet. 2010 Apr 01;6(4):e1000895 [PMID: 20369022]
  43. PLoS Genet. 2015 Jun 24;11(6):e1005272 [PMID: 26106896]
  44. PLoS Genet. 2009 Apr;5(4):e1000456 [PMID: 19381255]
  45. Nature. 2015 Jul 30;523(7562):588-91 [PMID: 26176920]
  46. Hum Mol Genet. 2015 Oct 15;24(R1):R102-10 [PMID: 26152199]
  47. Science. 2015 May 8;348(6235):648-60 [PMID: 25954001]
  48. Science. 2013 Jun 21;340(6139):1467-71 [PMID: 23722424]
  49. Nucleic Acids Res. 2014 Jan;42(Database issue):D1001-6 [PMID: 24316577]
  50. Am J Hum Genet. 2016 Dec 1;99(6):1245-1260 [PMID: 27866706]
  51. Nat Genet. 2006 Feb;38(2):203-8 [PMID: 16380716]
  52. PLoS Genet. 2012;8(3):e1002555 [PMID: 22396665]

Grants

  1. R01 ES021801/NIEHS NIH HHS
  2. R01 MH101782/NIMH NIH HHS
  3. T32 CA201160/NCI NIH HHS
  4. K25 HL080079/NHLBI NIH HHS
  5. P30 NS062691/NINDS NIH HHS
  6. P01 HL028481/NHLBI NIH HHS
  7. U01 DA024417/NIDA NIH HHS
  8. U54 EB020403/NIBIB NIH HHS
  9. K99 MH113823/NIMH NIH HHS
  10. R01 ES022282/NIEHS NIH HHS
  11. R00 GM111744/NIGMS NIH HHS
  12. P01 HL030568/NHLBI NIH HHS
  13. HHSN268201000029C/NHLBI NIH HHS
  14. R01 GM083198/NIGMS NIH HHS

MeSH Term

Alleles
Databases, Genetic
Gene Frequency
Genetic Association Studies
Humans
Linkage Disequilibrium
Models, Molecular
Phenotype
Quantitative Trait Loci

Word Cloud

Created with Highcharts 10.0.0AHlociGWASscomplextraitsassociationsizeextentallelicheterogeneitycausalvariantsexpressioneQTLidentifiedstrongproportioneQTLs=mappingRecentsuccessesgenome-widestudiesmakepossibleaddressimportantquestionsgeneticarchitectureallelefrequencyeffectOnelesser-knownaspectarisingmultiplelocusdevelopedcomputationalmethodinferprobabilityAH andappliedthreefourquantitativetraitdatasetstotal4152evidence4%-23%35%high-densitylipoproteinHDL23%schizophreniaobservedcorrelationsampleR085p22 ×10indicatingstatisticalpowerpreventsidentificationUnderstandingmayguidedevelopmentnewmethodsfineWidespreadAllelicHeterogeneityComplexTraitsgene

Similar Articles

Cited By