Describing the Diapause-Preparatory Proteome of the Beetle and Identifying Candidates Affecting Lipid Accumulation Using Isobaric Tags for Mass Spectrometry-Based Proteome Quantification (iTRAQ).

Qian-Qian Tan, Wen Liu, Fen Zhu, Chao-Liang Lei, Daniel A Hahn, Xiao-Ping Wang
Author Information
  1. Qian-Qian Tan: Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural UniversityWuhan, China.
  2. Wen Liu: Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural UniversityWuhan, China.
  3. Fen Zhu: Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural UniversityWuhan, China.
  4. Chao-Liang Lei: Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural UniversityWuhan, China.
  5. Daniel A Hahn: Department of Entomology and Nematology, University of FloridaGainesville, FL, USA.
  6. Xiao-Ping Wang: Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural UniversityWuhan, China.

Abstract

Prior to entering diapause, insects must prepare themselves physiologically to withstand the stresses of arresting their development for a lengthy period. While studies describing the biochemical and cellular milieu of the maintenance phase of diapause are accumulating, few studies have taken an "omics" approach to describing molecular events during the diapause preparatory phase. We used isobaric tags and mass spectrometry (iTRAQ) to quantitatively compare the expression profiles of proteins identified during the onset of diapause preparation phase in the heads of adult female cabbage beetles, . A total of 3,175 proteins were identified, 297 of which were differentially expressed between diapause-destined and non-diapause-destined female adults and could therefore be involved in diapause preparation in this species. Comparison of identified proteins with protein function databases shows that many of these differentially expressed proteins enhanced in diapause destined beetles are involved in energy production and conversion, carbohydrate metabolism and transport, and lipid metabolism. Further hand annotation of differentially abundant peptides nominates several associated with stress hardiness, including HSPs and antioxidants, as well as neural development. In contrast, non-diapause destined beetles show substantial increases in cuticle proteins, suggesting additional post-emergence growth. Using RNA interference to silence a fatty acid-binding protein (FABP) that was highly abundant in the head of diapause-destined females prevented the accumulation of lipids in the fat body, a common product of diapause preparation in this species and others. Surprisingly, RNAi against the FABP also affected the transcript abundance of several heat shock proteins. These results suggest that the identified differentially expressed proteins that play vital roles in lipid metabolism may also contribute somehow to enhanced hardiness to environmental stress that is characteristic of diapause.

Keywords

References

  1. Histochem Cell Biol. 2001 Jul;116(1):63-8 [PMID: 11479724]
  2. Annu Rev Entomol. 2002;47:93-122 [PMID: 11729070]
  3. EMBO J. 2002 Oct 15;21(20):5353-63 [PMID: 12374736]
  4. Mol Cell Biochem. 2002 Oct;239(1-2):35-43 [PMID: 12479566]
  5. Circ Res. 2003 Mar 21;92(5):518-24 [PMID: 12600885]
  6. J Insect Physiol. 2002 Mar;48(3):279-286 [PMID: 12770101]
  7. Histochemistry. 1992 Jul;97(6):493-7 [PMID: 1385366]
  8. J Med Entomol. 1992 Sep;29(5):843-9 [PMID: 1404264]
  9. Genetics. 2003 Sep;165(1):127-44 [PMID: 14504222]
  10. Proc Natl Acad Sci U S A. 2003 Oct 14;100(21):11986-91 [PMID: 14530389]
  11. Nucleic Acids Res. 2004 Jan 1;32(Database issue):D277-80 [PMID: 14681412]
  12. J Insect Physiol. 2004 May;50(5):373-81 [PMID: 15121450]
  13. Nature. 2004 Jun 3;429(6991):562-6 [PMID: 15175753]
  14. Mol Cell Proteomics. 2004 Dec;3(12):1154-69 [PMID: 15385600]
  15. Prog Lipid Res. 2005 Jan;44(1):1-51 [PMID: 15748653]
  16. J Insect Physiol. 2006 Feb;52(2):113-27 [PMID: 16332347]
  17. J Appl Genet. 2006;47(1):39-48 [PMID: 16424607]
  18. Neuron. 2006 Mar 16;49(6):833-44 [PMID: 16543132]
  19. Proc Natl Acad Sci U S A. 2007 Jul 3;104(27):11130-7 [PMID: 17522254]
  20. J Insect Physiol. 2007 Aug;53(8):760-73 [PMID: 17532002]
  21. BMC Genomics. 2007 Oct 04;8:356 [PMID: 17916248]
  22. PLoS One. 2008 Feb 20;3(2):e1631 [PMID: 18286188]
  23. RNA. 2008 May;14(5):878-87 [PMID: 18369183]
  24. Nat Rev Drug Discov. 2008 Jun;7(6):489-503 [PMID: 18511927]
  25. Nat Protoc. 2008;3(6):1101-8 [PMID: 18546601]
  26. J Insect Physiol. 2008 Dec;54(12):1503-10 [PMID: 18804477]
  27. J Insect Physiol. 2009 Jan;55(1):40-6 [PMID: 18992753]
  28. Nature. 2009 Apr 30;458(7242):1131-5 [PMID: 19339967]
  29. Physiol Genomics. 2009 Nov 6;39(3):202-9 [PMID: 19706691]
  30. Annu Rev Entomol. 2010;55:207-25 [PMID: 19725772]
  31. J Biol Chem. 2009 Dec 18;284(51):35818-26 [PMID: 19828452]
  32. Insect Mol Biol. 2009 Nov;18(6):759-68 [PMID: 19849724]
  33. Amino Acids. 2010 Aug;39(3):751-61 [PMID: 20198493]
  34. Insect Mol Biol. 2010 Jun 1;19(3):347-58 [PMID: 20201979]
  35. Cell Mol Life Sci. 2010 Jul;67(14):2405-24 [PMID: 20213274]
  36. Proc Natl Acad Sci U S A. 2010 Aug 17;107(33):14909-14 [PMID: 20668242]
  37. Annu Rev Entomol. 2011;56:103-21 [PMID: 20690828]
  38. PLoS One. 2011 Jan 27;6(1):e15890 [PMID: 21298037]
  39. J Insect Physiol. 2011 May;57(5):665-75 [PMID: 21419129]
  40. J Insect Physiol. 2011 May;57(5):635-44 [PMID: 21501620]
  41. BMC Genomics. 2011 May 11;12:224 [PMID: 21569297]
  42. J Exp Biol. 2011 Dec 1;214(Pt 23):3948-59 [PMID: 22071185]
  43. J Proteome Res. 2012 Feb 3;11(2):1042-53 [PMID: 22149145]
  44. J Insect Sci. 2011;11:145 [PMID: 22224544]
  45. J Insect Physiol. 2012 Jul;58(7):966-73 [PMID: 22579567]
  46. Proc Natl Acad Sci U S A. 2012 Sep 4;109(36):14687-92 [PMID: 22912402]
  47. Nat Methods. 2012 Jul;9(7):671-5 [PMID: 22930834]
  48. Insect Biochem Mol Biol. 2012 Dec;42(12):890-901 [PMID: 22982448]
  49. Proteome Sci. 2012 Sep 28;10(1):58 [PMID: 23021110]
  50. Mol Plant. 2013 Sep;6(5):1503-17 [PMID: 23475997]
  51. Proc Biol Sci. 2013 Mar 20;280(1759):20130143 [PMID: 23516243]
  52. PLoS One. 2013 Apr 08;8(4):e60386 [PMID: 23580252]
  53. J Proteomics. 2013 Nov 20;93:179-206 [PMID: 23628855]
  54. Front Physiol. 2013 Jul 22;4:189 [PMID: 23885240]
  55. Annu Rev Entomol. 2014;59:73-93 [PMID: 24160427]
  56. BMC Genomics. 2013 Nov 01;14:751 [PMID: 24180224]
  57. Sci Rep. 2013 Nov 14;3:3211 [PMID: 24226906]
  58. OMICS. 2014 Jul;18(7):421-37 [PMID: 24937107]
  59. Annu Rev Entomol. 2015 Jan 7;60:123-40 [PMID: 25341105]
  60. Annu Rev Entomol. 2015 Jan 7;60:59-75 [PMID: 25341107]
  61. PLoS One. 2014 Nov 07;9(11):e112179 [PMID: 25379782]
  62. PLoS One. 2015 Feb 18;10(2):e0118693 [PMID: 25692689]
  63. BMC Genomics. 2015 Sep 21;16:720 [PMID: 26391666]
  64. J Therm Biol. 2015 Dec;54:5-11 [PMID: 26615721]
  65. BMC Genomics. 2015 Dec 02;16:1028 [PMID: 26626891]
  66. BMC Genomics. 2015 Dec 21;16:1086 [PMID: 26689283]
  67. Proteomics. 2016 Feb;16(4):614-28 [PMID: 26698923]
  68. BMC Genomics. 2016 Jan 13;17:50 [PMID: 26758761]
  69. Insect Biochem Mol Biol. 2016 Jul;74:50-60 [PMID: 27180724]
  70. J Exp Biol. 2016 Sep 01;219(Pt 17):2613-22 [PMID: 27312473]
  71. Int Sch Res Notices. 2014 Oct 19;2014:967361 [PMID: 27382622]
  72. J Med Entomol. 1989 Jul;26(4):318-26 [PMID: 2769712]
  73. Oecologia. 2002 Jul;132(2):167-174 [PMID: 28547348]
  74. Neuron. 1995 Sep;15(3):663-73 [PMID: 7546745]
  75. Mol Cell Biochem. 1993 Jun 9-23;123(1-2):153-8 [PMID: 8232258]
  76. Insect Mol Biol. 1996 Feb;5(1):39-49 [PMID: 8630534]
  77. Biochim Biophys Acta. 1996 Jul 26;1302(2):93-109 [PMID: 8695669]
  78. Anal Biochem. 1976 May 7;72:248-54 [PMID: 942051]

Word Cloud

Created with Highcharts 10.0.0diapauseproteinsidentifiedpreparationdifferentiallymetabolismphaseiTRAQbeetlesexpressedproteinlipidstressdevelopmentstudiesdescribingfemalediapause-destinedinvolvedspeciesenhanceddestinedabundantseveralhardinessUsingfattyacid-bindingFABPalsoProteomePriorenteringinsectsmustpreparephysiologicallywithstandstressesarrestinglengthyperiodbiochemicalcellularmilieumaintenanceaccumulatingtaken"omics"approachmoleculareventspreparatoryusedisobarictagsmassspectrometryquantitativelycompareexpressionprofilesonsetheadsadultcabbagetotal3175297non-diapause-destinedadultsthereforeComparisonfunctiondatabasesshowsmanyenergyproductionconversioncarbohydratetransporthandannotationpeptidesnominatesassociatedincludingHSPsantioxidantswellneuralcontrastnon-diapauseshowsubstantialincreasescuticlesuggestingadditionalpost-emergencegrowthRNAinterferencesilencehighlyheadfemalespreventedaccumulationlipidsfatbodycommonproductothersSurprisinglyRNAiaffectedtranscriptabundanceheatshockresultssuggestplayvitalrolesmaycontributesomehowenvironmentalcharacteristicDescribingDiapause-PreparatoryBeetleIdentifyingCandidatesAffectingLipidAccumulationIsobaricTagsMassSpectrometry-BasedQuantificationproteomicsresistance

Similar Articles

Cited By