The Influence of Maternally Derived Antibody and Infant Age at Vaccination on Infant Vaccine Responses : An Individual Participant Meta-analysis.

Merryn Voysey, Dominic F Kelly, Thomas R Fanshawe, Manish Sadarangani, Katherine L O'Brien, Rafael Perera, Andrew J Pollard
Author Information
  1. Merryn Voysey: Nuffield Department of Primary Care Health Sciences, University of Oxford, Oxford, England2Oxford Vaccine Group, Department of Paediatrics, University of Oxford, Oxford, England3National Institute for Health Research Oxford Biomedical Research Centre, Oxford, England.
  2. Dominic F Kelly: Oxford Vaccine Group, Department of Paediatrics, University of Oxford, Oxford, England3National Institute for Health Research Oxford Biomedical Research Centre, Oxford, England.
  3. Thomas R Fanshawe: Nuffield Department of Primary Care Health Sciences, University of Oxford, Oxford, England.
  4. Manish Sadarangani: Oxford Vaccine Group, Department of Paediatrics, University of Oxford, Oxford, England3National Institute for Health Research Oxford Biomedical Research Centre, Oxford, England4Vaccine Evaluation Center, British Columbia Children's Hospital Research Institute, University of British Columbia, Vancouver, Canada.
  5. Katherine L O'Brien: International Vaccine Access Centre, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland.
  6. Rafael Perera: Nuffield Department of Primary Care Health Sciences, University of Oxford, Oxford, England.
  7. Andrew J Pollard: Oxford Vaccine Group, Department of Paediatrics, University of Oxford, Oxford, England3National Institute for Health Research Oxford Biomedical Research Centre, Oxford, England.

Abstract

Importance: The design of infant immunization schedules requires an understanding of the factors that determine the immune response to each vaccine antigen.
Data Sources: Deidentified individual Participant data from GlaxoSmithKline clinical trials were obtained through Clinical Study Data Request. The data were requested on January 2, 2015, and final data were received on April 11, 2016.
Study Selection: Immunogenicity trials of licensed or unlicensed vaccines administered to infants were included if antibody concentrations in infants were measured prior to the first dose of vaccine.
Data Extraction and Synthesis: The database was examined; studies that appeared to have appropriate data were reviewed.
Main Outcomes and Measures: Antigen-specific antibody concentration measured 1 month after priming vaccine doses, before booster vaccination, and 1 month after booster vaccine doses.
Results: A total of 7630 infants from 32 studies in 17 countries were included. Mean (SD) age at baseline was 9.0 (2.3) weeks; 3906 (51.2%) were boys. Preexisting maternal antibody inhibited infant antibody responses to priming doses for 20 of 21 antigens. The largest effects were observed for inactivated polio vaccine, where 2-fold higher maternal antibody concentrations resulted in 20% to 28% lower postvaccination antibody concentration (geometric mean ratios [GMRs], type 1: 0.80; 95% CI, 0.78-0.83; type 2: 0.72; 95% CI, 0.69-0.74; type 3: 0.78; 95% CI, 0.75-0.82). For acellular pertussis antigens, 2-fold higher maternal antibody was associated with 11% lower postvaccination antibody for pertussis toxoid (GMR, 0.89; 95% CI, 0.87-0.90) and filamentous hemagglutinin (GMR, 0.89; 95% CI, 0.88-0.90) and 22% lower pertactin antibody (GMR, 0.78; 95% CI, 0.77-0.80). For tetanus and diphtheria, these estimates were 13% (GMR, 0.87; 95% CI, 0.86-0.88) and 24% (GMR, 0.76; 95% CI, 0.74-0.77), respectively. The influence of maternal antibody was still evident in reduced responses to booster doses of acellular pertussis, inactivated polio, and diphtheria vaccines at 12 to 24 months of age. Children who were older when first immunized had higher antibody responses to priming doses for 18 of 21 antigens, after adjusting for the effect of maternal antibody concentrations. The largest effect was seen for polyribosylribitol phosphate antibody, where responses were 71% higher per month (GMR, 1.71; 95% CI, 1.52-1.92).
Conclusions and Relevance: Maternal antibody concentrations and infant age at first vaccination both influence infant vaccine responses. These effects are seen for almost all vaccines contained in global immunization programs and influence immune response for some vaccines even at the age of 24 months. These data highlight the potential for maternal immunization strategies to influence established infant programs.

References

  1. Pediatr Infect Dis J. 2009 Apr;28(4 Suppl):S66-76 [PMID: 19325449]
  2. Lancet. 2014 Oct 25;384(9953):1521-8 [PMID: 25037990]
  3. MMWR Morb Mortal Wkly Rep. 2013 Feb 22;62(7):131-5 [PMID: 23425962]
  4. J Infect Dis. 1992 May;165(5):977-9 [PMID: 1569355]
  5. Pediatr Infect Dis J. 2013 Nov;32(11):1257-60 [PMID: 23799518]
  6. Vaccine. 2016 Jan 2;34(1):151-9 [PMID: 26529073]
  7. BMC Public Health. 2011 Nov 23;11:882 [PMID: 22112189]
  8. Pediatrics. 1952 Jun;9(6):736-44 [PMID: 14929632]
  9. Pediatr Infect Dis J. 2011 Jul;30(7):608-10 [PMID: 21206396]
  10. BMJ Open. 2016 Jul 29;6(7):e011680 [PMID: 27473951]
  11. Pediatr Infect Dis J. 2004 Dec;23(12):1109-15 [PMID: 15626947]
  12. Clin Infect Dis. 2016 Apr 1;62(7):829-836 [PMID: 26797213]
  13. BMJ Open. 2016 Jan 06;6(1):e009536 [PMID: 26739731]
  14. Vaccine. 2003 Jul 28;21(24):3398-405 [PMID: 12850348]
  15. AIDS. 2016 Jan 28;30(3):471-5 [PMID: 26760235]
  16. Vaccine. 2001 May 14;19(25-26):3331-46 [PMID: 11348697]
  17. Vaccine. 2005 May 9;23(25):3272-9 [PMID: 15837232]
  18. Pediatr Infect Dis J. 1995 Oct;14(10):846-50 [PMID: 8584309]
  19. Pediatr Infect Dis J. 2006 Aug;25(8):713-20 [PMID: 16874171]
  20. Vaccine. 2014 Feb 12;32(8):996-1002 [PMID: 24342250]
  21. Pediatrics. 2011 Aug;128(2):e290-8 [PMID: 21727108]
  22. Vaccine. 2015 Apr 15;33(16):1948-52 [PMID: 25744227]
  23. Clin Infect Dis. 2016 Jan 15;62(2):157-65 [PMID: 26400993]
  24. Clin Infect Dis. 2015 Dec 1;61(11):1637-44 [PMID: 26374816]
  25. JAMA. 2014 May 7;311(17):1760-9 [PMID: 24794369]
  26. Pediatr Infect Dis J. 2013 Jul;32(7):777-85 [PMID: 23838777]
  27. Pediatr Infect Dis J. 2005 Jan;24(1):70-7 [PMID: 15665713]
  28. Lancet. 2009 Oct 17;374(9698):1339-50 [PMID: 19837254]
  29. Med Sci Monit. 2003 Dec;9(12):CR541-6 [PMID: 14646978]
  30. Pediatrics. 1995 Sep;96(3 Pt 2):580-4 [PMID: 7659480]
  31. BMJ Open. 2013 Apr 11;3(4):null [PMID: 23585389]
  32. Clin Infect Dis. 2015 Feb 1;60(3):333-7 [PMID: 25332078]
  33. Hum Vaccin. 2011 May;7(5):511-22 [PMID: 21441782]
  34. J Paediatr Child Health. 2007 Sep;43(9):587-92 [PMID: 17688642]
  35. J Infect Dis. 2007 Jul 1;196(1):104-14 [PMID: 17538890]
  36. J Infect Dis. 1980 Dec;142(6):861-8 [PMID: 6780634]
  37. Hum Vaccin. 2005 Sep-Oct;1(5):198-203 [PMID: 17012860]
  38. J Pediatric Infect Dis Soc. 2016 Dec 30;:null [PMID: 28040688]
  39. Philos Trans R Soc Lond B Biol Sci. 2015 Jun 19;370(1671):null [PMID: 25964459]
  40. BMC Infect Dis. 2010 Oct 15;10:297 [PMID: 20950456]
  41. Pediatr Infect Dis J. 2009 Apr;28(4 Suppl):S89-96 [PMID: 19325451]
  42. Pathog Glob Health. 2012 Jul;106(3):137-8 [PMID: 23265367]

MeSH Term

Antibodies, Bacterial
Female
Humans
Immunization Schedule
Immunization, Secondary
Infant
Male
Mothers
Vaccination

Chemicals

Antibodies, Bacterial

Word Cloud

Created with Highcharts 10.0.00antibody95%CIvaccinematernalGMRinfantdatadosesresponsesvaccinesconcentrations1agehigherinfluenceimmunizationinfantsfirstmonthprimingboosterantigenslowertypepertussisimmuneresponseDatatrials2includedmeasuredstudiesconcentrationvaccination21largesteffectsinactivatedpolio2-foldpostvaccination8078acellular8990diphtheria24monthseffectseenprogramsInfantImportance:designschedulesrequiresunderstandingfactorsdetermineantigenSources:DeidentifiedindividualparticipantGlaxoSmithKlineclinicalobtainedClinicalStudyDataRequestrequestedJanuary2015finalreceivedApril112016StudySelection:ImmunogenicitylicensedunlicensedadministeredpriordoseExtractionSynthesis:databaseexaminedappearedappropriatereviewedMainOutcomesMeasures:Antigen-specificResults:total76303217countriesMeanSDbaseline93weeks3906512%boysPreexistinginhibited20observedresulted20%28%geometricmeanratios[GMRs]1:78-0832:7269-0743:75-082associated11%toxoid87-0filamentoushemagglutinin88-022%pertactin77-0tetanusestimates13%8786-08824%7674-077respectivelystillevidentreduced12Childrenolderimmunized18adjustingpolyribosylribitolphosphate71%per7152-192ConclusionsRelevance:MaternalalmostcontainedglobalevenhighlightpotentialstrategiesestablishedInfluenceMaternallyDerivedAntibodyAgeVaccinationVaccineResponses:IndividualParticipantMeta-analysis

Similar Articles

Cited By