Increasing intracellular magnesium levels with the 31-amino acid MgtS protein.

Hanbo Wang, Xuefeng Yin, Mona Wu Orr, Michael Dambach, Rebecca Curtis, Gisela Storz
Author Information
  1. Hanbo Wang: Division of Molecular and Cellular Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, MD 20892-5430.
  2. Xuefeng Yin: Division of Molecular and Cellular Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, MD 20892-5430.
  3. Mona Wu Orr: Division of Molecular and Cellular Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, MD 20892-5430.
  4. Michael Dambach: Division of Molecular and Cellular Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, MD 20892-5430.
  5. Rebecca Curtis: Division of Molecular and Cellular Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, MD 20892-5430.
  6. Gisela Storz: Division of Molecular and Cellular Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, MD 20892-5430; storzg@mail.nih.gov.

Abstract

Synthesis of the 31-amino acid, inner membrane protein MgtS (formerly denoted YneM) is induced by very low Mg in a PhoPQ-dependent manner in Here we report that MgtS acts to increase intracellular Mg levels and maintain cell integrity upon Mg depletion. Upon development of a functional tagged derivative of MgtS, we found that MgtS interacts with MgtA to increase the levels of this P-type ATPase Mg transporter under Mg-limiting conditions. Correspondingly, the effects of MgtS upon Mg limitation are lost in a ∆ mutant, and MgtA overexpression can suppress the ∆ phenotype. MgtS stabilization of MgtA provides an additional layer of regulation of this tightly controlled Mg transporter and adds to the list of small proteins that regulate inner membrane transporters.

Keywords

References

  1. Curr Opin Microbiol. 2015 Apr;24:7-14 [PMID: 25589045]
  2. J Proteome Res. 2004 May-Jun;3(3):463-8 [PMID: 15253427]
  3. PLoS Genet. 2009 Dec;5(12):e1000788 [PMID: 20041203]
  4. Proc Natl Acad Sci U S A. 2016 Dec 27;113(52):15096-15101 [PMID: 27849575]
  5. J Biol Chem. 2011 Sep 16;286(37):32464-74 [PMID: 21778229]
  6. J Bacteriol. 1986 Dec;168(3):1444-50 [PMID: 3536881]
  7. J Bacteriol. 2012 Mar;194(6):1457-63 [PMID: 22267510]
  8. FEBS J. 2008 Oct;275(19):4767-72 [PMID: 18721134]
  9. Cell. 2013 Jul 3;154(1):146-56 [PMID: 23827679]
  10. Mol Microbiol. 2006 Feb;59(3):1025-36 [PMID: 16420369]
  11. Proc Natl Acad Sci U S A. 2002 Nov 12;99(23):14964-9 [PMID: 12397182]
  12. Biochem Biophys Res Commun. 2012 Jan 6;417(1):318-23 [PMID: 22155249]
  13. Nature. 2014 May 22;509(7501):512-5 [PMID: 24747401]
  14. J Bacteriol. 2010 Jan;192(1):46-58 [PMID: 19734316]
  15. Mol Microbiol. 2014 Jan;91(1):135-44 [PMID: 24256574]
  16. Proc Natl Acad Sci U S A. 2012 Oct 9;109(41):16696-701 [PMID: 23010927]
  17. EMBO J. 2008 Feb 6;27(3):546-57 [PMID: 18200043]
  18. Cell Microbiol. 2008 Mar;10(3):576-82 [PMID: 18182085]
  19. Mol Microbiol. 2009 Dec;74(6):1314-30 [PMID: 19889087]
  20. Annu Rev Genet. 2013;47:625-46 [PMID: 24079267]
  21. J Bacteriol. 1997 Sep;179(17):5534-42 [PMID: 9287010]
  22. Cell. 2015 Feb 12;160(4):595-606 [PMID: 25640239]
  23. J Bacteriol. 1989 Sep;171(9):4761-6 [PMID: 2670893]
  24. Mol Microbiol. 2008 Dec;70(6):1487-501 [PMID: 19121005]
  25. Elife. 2016 Jan 18;5: [PMID: 26780187]
  26. Mol Microbiol. 2016 Nov;102(3):430-445 [PMID: 27447896]
  27. Cell. 2010 Sep 3;142(5):737-48 [PMID: 20813261]
  28. Cell. 2006 Apr 7;125(1):71-84 [PMID: 16615891]
  29. Science. 2016 Jan 15;351(6270):271-5 [PMID: 26816378]
  30. Mol Microbiol. 1997 Jun;24(6):1303-10 [PMID: 9218777]
  31. J Bacteriol. 2003 Jul;185(13):3696-702 [PMID: 12813061]
  32. Chem Biodivers. 2012 Sep;9(9):2035-49 [PMID: 22976989]
  33. Curr Opin Microbiol. 2014 Feb;17:106-13 [PMID: 24531506]
  34. PLoS Genet. 2015 Mar 16;11(3):e1004977 [PMID: 25774656]
  35. Annu Rev Biochem. 2014;83:753-77 [PMID: 24606146]
  36. Genes Dev. 2001 Jul 1;15(13):1637-51 [PMID: 11445539]
  37. J Bacteriol. 2013 May;195(10):2368-78 [PMID: 23504014]

MeSH Term

Adenosine Triphosphatases
Cation Transport Proteins
Escherichia coli
Escherichia coli Proteins
Gene Expression Regulation, Bacterial
Magnesium
Membrane Proteins
Membrane Transport Proteins
P-type ATPases

Chemicals

Cation Transport Proteins
Escherichia coli Proteins
Membrane Proteins
Membrane Transport Proteins
MgtS protein, E coli
inner membrane protein, E coli
Adenosine Triphosphatases
MgtA protein, E coli
P-type ATPases
Magnesium

Word Cloud

Created with Highcharts 10.0.0MgtSMgMgtAproteinlevels31-aminoacidinnermembraneincreaseintracellularupontransportersmalltransportersSynthesisformerlydenotedYneMinducedlowPhoPQ-dependentmannerreportactsmaintaincellintegritydepletionUpondevelopmentfunctionaltaggedderivativefoundinteractsP-typeATPaseMg-limitingconditionsCorrespondinglyeffectslimitationlostmutantoverexpressioncansuppressphenotypestabilizationprovidesadditionallayerregulationtightlycontrolledaddslistproteinsregulateIncreasingmagnesiumFtsHPhoP

Similar Articles

Cited By (40)