Mode of action of the 2-phenylquinoline efflux inhibitor PQQ4R against .

Diana Machado, Laura Fernandes, Sofia S Costa, Rolando Cannalire, Giuseppe Manfroni, Oriana Tabarrini, Isabel Couto, Stefano Sabatini, Miguel Viveiros
Author Information
  1. Diana Machado: Unidade de Microbiologia Médica, Global Health and Tropical Medicine, GHTM, Instituto de Higiene e Medicina Tropical, IHMT, Universidade NOVA de Lisboa, UNL, Lisboa, Portugal.
  2. Laura Fernandes: Unidade de Microbiologia Médica, Global Health and Tropical Medicine, GHTM, Instituto de Higiene e Medicina Tropical, IHMT, Universidade NOVA de Lisboa, UNL, Lisboa, Portugal.
  3. Sofia S Costa: Unidade de Microbiologia Médica, Global Health and Tropical Medicine, GHTM, Instituto de Higiene e Medicina Tropical, IHMT, Universidade NOVA de Lisboa, UNL, Lisboa, Portugal.
  4. Rolando Cannalire: Department of Pharmaceutical Sciences, Universitá degli Studi di Perugia, Perugia, Italy.
  5. Giuseppe Manfroni: Department of Pharmaceutical Sciences, Universitá degli Studi di Perugia, Perugia, Italy.
  6. Oriana Tabarrini: Department of Pharmaceutical Sciences, Universitá degli Studi di Perugia, Perugia, Italy.
  7. Isabel Couto: Unidade de Microbiologia Médica, Global Health and Tropical Medicine, GHTM, Instituto de Higiene e Medicina Tropical, IHMT, Universidade NOVA de Lisboa, UNL, Lisboa, Portugal.
  8. Stefano Sabatini: Department of Pharmaceutical Sciences, Universitá degli Studi di Perugia, Perugia, Italy.
  9. Miguel Viveiros: Unidade de Microbiologia Médica, Global Health and Tropical Medicine, GHTM, Instituto de Higiene e Medicina Tropical, IHMT, Universidade NOVA de Lisboa, UNL, Lisboa, Portugal.

Abstract

Efflux pump inhibitors are of great interest since their use as adjuvants of bacterial chemotherapy can increase the intracellular concentrations of the antibiotics and assist in the battle against the rising of antibiotic-resistant bacteria. In this work, we have described the mode of action of the 2-phenylquinoline efflux inhibitor (4-(2-(piperazin-1-yl)ethoxy)-2-(4-propoxyphenyl) quinolone - PQQ4R), against by studding its efflux inhibitory ability, its synergistic activity in combination with antibiotics, and compared its effects with the inhibitors phenyl-arginine-β-naphthylamide (PAβN) and chlorpromazine (CPZ). The results showed that PQQ4R acts synergistically, in a concentration dependent manner, with antibiotics known to be subject to efflux in reducing their MIC in correlation with the inhibition of their efflux. Real-time fluorometry assays demonstrated that PQQ4R at sub-inhibitory concentrations promote the intracellular accumulation of ethidium bromide inhibiting its efflux similarly to PAβN or CPZ, well-known and described efflux pump inhibitors for Gram-negative bacteria and whose clinical usage is limited by their levels of toxicity at clinical and bacteriological effective concentrations. The time-kill studies showed that PQQ4R, at bactericidal concentrations, has a rapid antimicrobial activity associated with a fast decrease of the intracellular ATP levels. The results also indicated that the mode of action of PQQ4R involves the destabilization of the inner membrane potential and ATP production impairment, ultimately leading to efflux pump inhibition by interference with the energy required by the efflux systems. At bactericidal concentrations, membrane permeabilization increases and finally ATP is totally depleted leading to cell death. Since drug resistance mediated by the activity of efflux pumps depends largely on the proton motive force (PMF), dissipaters of PMF such as PQQ4R, can be regarded as future adjuvants of conventional therapy against and other Gram-negative bacteria, especially their multidrug resistant forms. Their major limitation is the high toxicity for human cells at the concentrations needed to be effective against bacteria. Their future molecular optimization to improve the efflux inhibitory properties and reduce relative toxicity will optimize their potential for clinical usage against multi-drug resistant bacterial infections due to efflux.

Keywords

References

  1. Clin Microbiol Rev. 2006 Apr;19(2):382-402 [PMID: 16614254]
  2. Front Microbiol. 2015 Apr 28;6:330 [PMID: 25972842]
  3. Biochim Biophys Acta. 2009 May;1794(5):769-81 [PMID: 19026770]
  4. Nat Rev Microbiol. 2006 Aug;4(8):629-36 [PMID: 16845433]
  5. Bioorg Med Chem Lett. 2003 Dec 1;13(23):4241-4 [PMID: 14623009]
  6. Proc Natl Acad Sci U S A. 2005 Mar 22;102(12):4548-53 [PMID: 15767566]
  7. Antimicrob Agents Chemother. 2014;58(2):722-33 [PMID: 24247144]
  8. Eur J Biochem. 2000 Sep;267(17):5421-6 [PMID: 10951200]
  9. Nat Rev Microbiol. 2005 Mar;3(3):238-50 [PMID: 15703760]
  10. SAR QSAR Environ Res. 2015;26(10):853-71 [PMID: 26559566]
  11. Nature. 2014 May 22;509(7501):512-5 [PMID: 24747401]
  12. J Antimicrob Chemother. 2006 Feb;57(2):339-43 [PMID: 16354747]
  13. Antimicrob Agents Chemother. 2003 Sep;47(9):3030-3 [PMID: 12937021]
  14. FEMS Microbiol Rev. 2012 Mar;36(2):340-63 [PMID: 21707670]
  15. PLoS One. 2013 May 17;8(5):e64518 [PMID: 23691239]
  16. J Bacteriol. 2015 Aug 1;197(15):2479-88 [PMID: 25962916]
  17. PLoS One. 2007 Apr 11;2(4):e365 [PMID: 17426813]
  18. Biochim Biophys Acta. 2014 Jul;1837(7):954-63 [PMID: 24709059]
  19. PLoS One. 2013;8(3):e60666 [PMID: 23544160]
  20. In Vivo. 2011 Sep-Oct;25(5):769-72 [PMID: 21753132]
  21. J Med Chem. 2011 Aug 25;54(16):5722-36 [PMID: 21751791]
  22. Indian J Biochem Biophys. 1991 Oct-Dec;28(5-6):491-5 [PMID: 1667396]
  23. Antimicrob Agents Chemother. 2016 Mar 25;60(4):1974-83 [PMID: 26824939]
  24. PeerJ. 2016 May 10;4:e1987 [PMID: 27190708]
  25. Drugs. 2009 Aug 20;69(12):1555-623 [PMID: 19678712]
  26. J Bacteriol. 1996 Jan;178(1):306-8 [PMID: 8550435]
  27. PLoS One. 2016 Feb 26;11(2):e0149326 [PMID: 26919135]
  28. Antimicrob Agents Chemother. 2005 Aug;49(8):3578-82 [PMID: 16048990]
  29. Open Microbiol J. 2013;7:83-6 [PMID: 23560030]
  30. Chem Biol. 2013 Sep 19;20(9):1168-78 [PMID: 23972939]
  31. Front Microbiol. 2015 Apr 28;6:377 [PMID: 25972857]
  32. J Phys Chem B. 2016 Mar 10;120(9):2145-54 [PMID: 26900716]
  33. ACS Infect Dis. 2015 Dec 11;1(12):593-603 [PMID: 27623057]
  34. Int J Antimicrob Agents. 2008 May;31(5):458-62 [PMID: 18343640]
  35. J Bacteriol. 1983 Aug;155(2):531-40 [PMID: 6348022]
  36. Eur J Med Chem. 2011 Aug;46(8):3179-89 [PMID: 21620536]
  37. Front Microbiol. 2015 Jun 10;6:587 [PMID: 26113845]
  38. Methods Mol Biol. 2013;979:65-70 [PMID: 23397389]
  39. Methods Mol Biol. 2010;642:159-72 [PMID: 20401593]
  40. J Med Chem. 2013 Jun 27;56(12):4975-89 [PMID: 23710549]
  41. Antimicrob Agents Chemother. 2014 Oct;58(10):6224-34 [PMID: 25114133]
  42. Antimicrob Agents Chemother. 2001 Jan;45(1):105-16 [PMID: 11120952]

Word Cloud

Created with Highcharts 10.0.0effluxconcentrationsPQQ4RbacteriaATPEffluxpumpinhibitorsintracellularantibioticsactioninhibitoractivityclinicaltoxicitypotentialadjuvantsbacterialcandescribedmode2-phenylquinolineinhibitoryPAβNCPZresultsshowedinhibitionGram-negativeusagelevelseffectivebactericidalmembraneproductionimpairmentleadingpumpsPMFfutureresistantMembranegreatinterestsinceusechemotherapyincreaseassistbattlerisingantibiotic-resistantwork4-2-piperazin-1-ylethoxy-2-4-propoxyphenylquinolone- PQQ4Rstuddingabilitysynergisticcombinationcomparedeffectsphenyl-arginine-β-naphthylamidechlorpromazineactssynergisticallyconcentrationdependentmannerknownsubjectreducingMICcorrelationReal-timefluorometryassaysdemonstratedsub-inhibitorypromoteaccumulationethidiumbromideinhibitingsimilarlywell-knownwhoselimitedbacteriologicaltime-killstudiesrapidantimicrobialassociatedfastdecreasealsoindicatedinvolvesdestabilizationinnerultimatelyinterferenceenergyrequiredsystemspermeabilizationincreasesfinallytotallydepletedcelldeathSincedrugresistancemediateddependslargelyprotonmotiveforcedissipatersregardedconventionaltherapyespeciallymultidrugformsmajorlimitationhighhumancellsneededmolecularoptimizationimprovepropertiesreducerelativewilloptimizemulti-druginfectionsdueModeAcrABAntibioticsynergismpermeabilityRND

Similar Articles

Cited By