Acyl-CoA thioesterase 7 is involved in cell cycle progression via regulation of PKCζ-p53-p21 signaling pathway.

Seung Hee Jung, Hyung Chul Lee, Hyun Jung Hwang, Hyun A Park, Young-Ah Moon, Bong Cho Kim, Hyeong Min Lee, Kwang Pyo Kim, Yong-Nyun Kim, Byung Lan Lee, Jae Cheol Lee, Young-Gyu Ko, Heon Joo Park, Jae-Seon Lee
Author Information
  1. Seung Hee Jung: Department of Molecular Medicine, Inha University College of Medicine, Incheon, Korea.
  2. Hyung Chul Lee: Department of Molecular Medicine, Inha University College of Medicine, Incheon, Korea.
  3. Hyun Jung Hwang: Department of Molecular Medicine, Inha University College of Medicine, Incheon, Korea.
  4. Hyun A Park: Department of Molecular Medicine, Inha University College of Medicine, Incheon, Korea.
  5. Young-Ah Moon: Department of Molecular Medicine, Inha University College of Medicine, Incheon, Korea.
  6. Bong Cho Kim: Division of Basic Radiation Bioscience, Korea Institute of Radiological and Medical Sciences, Seoul, Korea.
  7. Hyeong Min Lee: Department of Applied Chemistry, College of Applied Science, Kyung Hee University, Yongin, Korea.
  8. Kwang Pyo Kim: Department of Applied Chemistry, College of Applied Science, Kyung Hee University, Yongin, Korea. ORCID
  9. Yong-Nyun Kim: Division of Cancer Biology, Research Institute, National Cancer Center, Goyang, Korea.
  10. Byung Lan Lee: Department of Anatomy, Seoul National University College of Medicine, Seoul, Korea.
  11. Jae Cheol Lee: Department of Oncology, Asan Medical Center, College of Medicine, University of Ulsan, Seoul, Korea.
  12. Young-Gyu Ko: Division of Life Sciences, Korea University, Seoul, Korea.
  13. Heon Joo Park: Hypoxia-Related Disease Research Center, Inha University College of Medicine, Incheon, Korea.
  14. Jae-Seon Lee: Department of Molecular Medicine, Inha University College of Medicine, Incheon, Korea. ORCID

Abstract

Acyl-CoA thioesterase 7 (ACOT7) is a major isoform of the ACOT family that catalyzes hydrolysis of fatty acyl-CoAs to free fatty acids and CoA-SH. However, canonical and non-canonical functions of ACOT7 remain to be discovered. In this study, for the first time, ACOT7 was shown to be responsive to genotoxic stresses such as ionizing radiation (IR) and the anti-cancer drug doxorubicin in time- and dose-dependent manners. ACOT7 knockdown induced cytostasis via activation of the p53-p21 signaling pathway without a DNA damage response. PKCζ was specifically involved in ACOT7 depletion-mediated cell cycle arrest as an upstream molecule of the p53-p21 signaling pathway in MCF7 human breast carcinoma and A549 human lung carcinoma cells. Of the other members of the ACOT family, including ACOT1, 4, 8, 9, 11, 12, and 13 that were expressed in human, ACOT4, 8, and 12 were responsive to genotoxic stresses. However, none of those had a role in cytostasis via activation of the PKCζ-p53-p21 signaling pathway. Analysis of the ACOT7 prognostic value revealed that low ACOT7 levels prolonged overall survival periods in breast and lung cancer patients. Furthermore, ACOT7 mRNA levels were higher in lung cancer patient tissues compared to normal tissues. We also observed a synergistic effect of ACOT7 depletion in combination with either IR or doxorubicin on cell proliferation in breast and lung cancer cells. Together, our data suggest that a low level of ACOT7 may be involved, at least in part, in the prevention of human breast and lung cancer development via regulation of cell cycle progression.

References

  1. EMBO J. 2001 Aug 1;20(15):3947-56 [PMID: 11483498]
  2. Prog Lipid Res. 2010 Oct;49(4):366-77 [PMID: 20470824]
  3. Cell Death Differ. 2011 Apr;18(4):666-77 [PMID: 21072054]
  4. Prostaglandins Other Lipid Mediat. 2006 May;79(3-4):271-7 [PMID: 16647640]
  5. Cancer Res. 2007 Sep 15;67(18):8828-38 [PMID: 17875724]
  6. Hum Genomics. 2010 Aug;4(6):411-20 [PMID: 20846931]
  7. EMBO J. 2012 Nov 14;31(22):4289-303 [PMID: 23085987]
  8. Cell Death Differ. 2016 Mar;23 (3):417-29 [PMID: 26250908]
  9. J Biol Chem. 2004 May 21;279(21):21841-8 [PMID: 15007068]
  10. Nat Med. 2003 Jul;9(7):944-51 [PMID: 12808451]
  11. Arch Biochem Biophys. 1994 Jan;308(1):118-25 [PMID: 7906114]
  12. Biol Pharm Bull. 2011;34(1):87-91 [PMID: 21212523]
  13. Oncogene. 2014 Nov 6;33(45):5225-37 [PMID: 24336328]
  14. Arch Biochem Biophys. 1996 Feb 1;326(1):106-14 [PMID: 8579357]
  15. PLoS One. 2015 Mar 11;10(3):e0116587 [PMID: 25760036]
  16. J Biol Chem. 2000 Mar 17;275(11):7574-82 [PMID: 10713064]
  17. Cancer Lett. 2010 Dec 1;298(1):16-25 [PMID: 20630651]
  18. Anticancer Res. 2012 Mar;32(3):923-37 [PMID: 22399613]
  19. Cell Res. 2007 Feb;17(2):151-62 [PMID: 17297481]
  20. Proc Natl Acad Sci U S A. 2007 Jun 19;104(25):10382-7 [PMID: 17563367]
  21. Biol Open. 2012 May 15;1(5):436-45 [PMID: 23213435]
  22. FASEB J. 2012 May;26(5):2209-21 [PMID: 22345407]
  23. J Biol Chem. 2013 Nov 15;288(46):33376-86 [PMID: 24072708]
  24. Mol Cell Biol. 2012 Jul;32(14):2685-97 [PMID: 22586271]
  25. Immunol Rev. 2012 Mar;246(1):154-67 [PMID: 22435553]
  26. J Lipid Res. 2007 Jul;48(7):1511-7 [PMID: 17438340]
  27. J Radiat Res. 2008 Mar;49(2):105-12 [PMID: 18219184]
  28. Expert Rev Anticancer Ther. 2015 Apr;15(4):433-8 [PMID: 25604078]
  29. Amino Acids. 2005 May;28(3):273-8 [PMID: 15731883]
  30. Prostaglandins Leukot Essent Fatty Acids. 1999 Aug;61(2):105-12 [PMID: 10509865]
  31. Cancer Res. 2009 Jun 1;69(11):4638-47 [PMID: 19487283]
  32. FEBS Lett. 2009 Nov 19;583(22):3582-8 [PMID: 19840791]
  33. Prog Lipid Res. 2002 Mar;41(2):99-130 [PMID: 11755680]
  34. Eur J Biochem. 2002 Nov;269(22):5599-607 [PMID: 12423359]
  35. Anticancer Res. 2012 Apr;32(4):1507-13 [PMID: 22493394]
  36. J Cell Physiol. 2003 Dec;197(3):370-8 [PMID: 14566966]
  37. Cell Death Dis. 2013 Feb 14;4:e498 [PMID: 23412390]
  38. J Neurochem. 1995 May;64(5):2345-53 [PMID: 7722521]
  39. Cell Mol Life Sci. 2007 Jun;64(12):1558-70 [PMID: 17514357]
  40. Biochem J. 1998 Feb 1;329 ( Pt 3):601-8 [PMID: 9445388]
  41. Hum Genomics. 2010 Oct;5(1):30-55 [PMID: 21106488]
  42. Biol Pharm Bull. 2013;36(5):866-71 [PMID: 23649344]
  43. Proc Natl Acad Sci U S A. 2012 Apr 3;109(14):5417-22 [PMID: 22427358]
  44. Basic Res Cardiol. 2011 May;106(3):447-57 [PMID: 21318295]
  45. Oncol Rep. 2010 Aug;24(2):395-403 [PMID: 20596626]
  46. J Lipid Res. 2005 Sep;46(9):2029-32 [PMID: 16103133]
  47. Arch Immunol Ther Exp (Warsz). 2012 Oct;60(5):361-72 [PMID: 22918451]
  48. Eur J Biochem. 1998 Feb 1;251(3):631-40 [PMID: 9490035]
  49. Sci STKE. 2007 Aug 28;2007(401):re6 [PMID: 17726178]
  50. Mol Cell Biol. 2013 May;33(9):1869-82 [PMID: 23459938]
  51. Metabolism. 2003 Dec;52(12):1527-9 [PMID: 14669149]
  52. Cardiovasc Res. 2009 May 1;82(2):240-9 [PMID: 19074824]

MeSH Term

A549 Cells
Antineoplastic Agents
Cell Cycle
Cell Cycle Checkpoints
Cyclin-Dependent Kinase Inhibitor p21
DNA Damage
Down-Regulation
Doxorubicin
Drug Synergism
Humans
MCF-7 Cells
Masoprocol
Protein Kinase C
Radiation, Ionizing
Signal Transduction
Thiolester Hydrolases
Tumor Suppressor Protein p53

Chemicals

Antineoplastic Agents
Cyclin-Dependent Kinase Inhibitor p21
Tumor Suppressor Protein p53
Masoprocol
Doxorubicin
protein kinase C zeta
Protein Kinase C
Thiolester Hydrolases

Word Cloud

Created with Highcharts 10.0.0ACOT7lungviasignalingpathwaycellhumanbreastcancerinvolvedcycleAcyl-CoAthioesterase7ACOTfamilyfattyHoweverresponsivegenotoxicstressesIRdoxorubicincytostasisactivationp53-p21carcinomacells812PKCζ-p53-p21lowlevelstissuesregulationprogressionmajorisoformcatalyzeshydrolysisacyl-CoAsfreeacidsCoA-SHcanonicalnon-canonicalfunctionsremaindiscoveredstudyfirsttimeshownionizingradiationanti-cancerdrugtime-dose-dependentmannersknockdowninducedwithoutDNAdamageresponsePKCζspecificallydepletion-mediatedarrestupstreammoleculeMCF7A549membersincludingACOT1491113expressedACOT4noneroleAnalysisprognosticvaluerevealedprolongedoverallsurvivalperiodspatientsFurthermoremRNAhigherpatientcomparednormalalsoobservedsynergisticeffectdepletioncombinationeitherproliferationTogetherdatasuggestlevelmayleastpartpreventiondevelopment

Similar Articles

Cited By