Loss of the Habenula Intrinsic Neuromodulator Kisspeptin1 Affects Learning in Larval Zebrafish.

Charlotte Lupton, Mohini Sengupta, Ruey-Kuang Cheng, Joanne Chia, Vatsala Thirumalai, Suresh Jesuthasan
Author Information
  1. Charlotte Lupton: Department of Animal and Plant Sciences, University of Sheffield, Sheffield, S10 2TN, UK. ORCID
  2. Mohini Sengupta: National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bangalore, 560065, India. ORCID
  3. Ruey-Kuang Cheng: Lee Kong Chian School of Medicine, Nanyang Technological University, 636921, Singapore.
  4. Joanne Chia: National University of Singapore Graduate School for Integrative Sciences and Engineering, 117456, Singapore. ORCID
  5. Vatsala Thirumalai: National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bangalore, 560065, India. ORCID
  6. Suresh Jesuthasan: Institute for Molecular and Cell Biology, 138673, Singapore. ORCID

Abstract

Learning how to actively avoid a predictable threat involves two steps: recognizing the cue that predicts upcoming punishment and learning a behavioral response that will lead to avoidance. In zebrafish, ventral habenula (vHb) neurons have been proposed to participate in both steps by encoding the expected aversiveness of a stimulus. vHb neurons increase their firing rate as expectation of punishment grows but reduce their activity as avoidance learning occurs. This leads to changes in the activity of raphe neurons, which are downstream of the vHb, during learning. How vHb activity is regulated is not known. Here, we ask whether the neuromodulator Kisspeptin1, which is expressed in the ventral habenula together with its receptor, could be involved. mutants were generated with CRISPR/Cas9 using guide RNAs targeted to the signal sequence. Mutants, which have a stop codon upstream of the active Kisspeptin1 peptide, have a deficiency in learning to avoid a shock that is predicted by light. Electrophysiology indicates that Kisspeptin1 has a concentration-dependent effect on vHb neurons: depolarizing at low concentrations and hyperpolarizing at high concentrations. Two-photon calcium imaging shows that mutants have reduced raphe response to shock. These data are consistent with the hypothesis that Kisspeptin1 modulates habenula neurons as the fish learns to cope with a threat. Learning a behavioral strategy to overcome a stressor may thus be accompanied by physiological change in the habenula, mediated by intrinsic neuromodulation.

Keywords

References

  1. Proc Natl Acad Sci U S A. 2014 Mar 11;111(10):3841-6 [PMID: 24567386]
  2. Nucleic Acids Res. 2007 Jul;35(Web Server issue):W599-605 [PMID: 17526515]
  3. PLoS One. 2012;7(5):e37909 [PMID: 22649563]
  4. Physiol Rev. 2012 Jul;92(3):1235-316 [PMID: 22811428]
  5. Nat Neurosci. 2010 Nov;13(11):1354-6 [PMID: 20935642]
  6. Endocrinology. 2011 Apr;152(4):1527-40 [PMID: 21325050]
  7. Endocrinology. 2012 May;153(5):2398-407 [PMID: 22454151]
  8. FASEB J. 2012 Jul;26(7):2941-50 [PMID: 22499582]
  9. Nat Neurosci. 2009 Jan;12(1):77-84 [PMID: 19043410]
  10. Cell Rep. 2013 Jul 11;4(1):220-8 [PMID: 23827738]
  11. Nature. 2007 Jun 28;447(7148):1111-5 [PMID: 17522629]
  12. Endocrinology. 2009 Feb;150(2):821-31 [PMID: 18927220]
  13. Nature. 1994 Feb 24;367(6465):729-31 [PMID: 8107867]
  14. J Neurophysiol. 2012 Apr;107(8):2250-9 [PMID: 22262823]
  15. Front Neural Circuits. 2016 Apr 26;10 :30 [PMID: 27199671]
  16. Curr Biol. 2010 Dec 21;20(24):2211-6 [PMID: 21145744]
  17. Nat Biotechnol. 2013 Mar;31(3):227-9 [PMID: 23360964]
  18. Learn Mem. 2012 Mar 20;19(4):170-7 [PMID: 22434824]
  19. Endocrinol Metab (Seoul). 2015 Jun;30(2):124-41 [PMID: 26194072]
  20. Proc Natl Acad Sci U S A. 2013 Aug 20;110(34):13904-9 [PMID: 23918387]
  21. Neuron. 2013 Jun 5;78(5):881-94 [PMID: 23684786]
  22. Nat Neurosci. 2014 Apr;17(4):491-6 [PMID: 24671065]
  23. Peptides. 2009 Jan;30(1):16-25 [PMID: 18765263]
  24. J Neurochem. 2015 Nov;135(4):814-29 [PMID: 26250886]
  25. Development. 2013 Dec;140(24):4982-7 [PMID: 24257628]
  26. J Neurosci. 2005 Dec 7;25(49):11349-56 [PMID: 16339030]
  27. J Neurochem. 2015 Jun;133(6):870-8 [PMID: 25818845]
  28. Elife. 2015 Sep 29;4:null [PMID: 26416140]
  29. Exp Physiol. 2013 Nov;98(11):1535-43 [PMID: 23884368]
  30. J Neurosci. 2010 Jan 27;30(4):1566-74 [PMID: 20107084]
  31. Neuron. 2014 Dec 3;84(5):1034-48 [PMID: 25467985]

MeSH Term

Animals
Animals, Genetically Modified
Avoidance Learning
CRISPR-Cas Systems
Calcium
Conditioning, Operant
Dorsal Raphe Nucleus
Electroshock
Habenula
Kisspeptins
Larva
Membrane Potentials
Neurons
Patch-Clamp Techniques
Photic Stimulation
Voltage-Sensitive Dye Imaging
Zebrafish
Zebrafish Proteins

Chemicals

Kiss1 protein, zebrafish
Kisspeptins
Zebrafish Proteins
Calcium

Word Cloud

Created with Highcharts 10.0.0learninghabenulavHbKisspeptin1neuronsLearningactivityavoidthreatpunishmentbehavioralresponseavoidanceventralraphemutantsshockconcentrationsimagingintrinsicneuromodulationactivelypredictableinvolvestwosteps:recognizingcuepredictsupcomingwillleadzebrafishproposedparticipatestepsencodingexpectedaversivenessstimulusincreasefiringrateexpectationgrowsreduceoccursleadschangesdownstreamregulatedknownaskwhetherneuromodulatorexpressedtogetherreceptorinvolvedgeneratedCRISPR/Cas9usingguideRNAstargetedsignalsequenceMutantsstopcodonupstreamactivepeptidedeficiencypredictedlightElectrophysiologyindicatesconcentration-dependenteffectneurons:depolarizinglowhyperpolarizinghighTwo-photoncalciumshowsreduceddataconsistenthypothesismodulatesfishlearnscopestrategyovercomestressormaythusaccompaniedphysiologicalchangemediatedLossHabenulaIntrinsicNeuromodulatorAffectsLarvalZebrafishCalciumelectrophysiologymutantoperant

Similar Articles

Cited By