Experimental cardiac radiation exposure induces ventricular diastolic dysfunction with preserved ejection fraction.

Hirofumi Saiki, Gilles Moulay, Adam J Guenzel, Weibin Liu, Teresa D Decklever, Kelly L Classic, Linh Pham, Horng H Chen, John C Burnett, Stephen J Russell, Margaret M Redfield
Author Information
  1. Hirofumi Saiki: Department of Cardiovascular Diseases, Mayo Clinic, Rochester, Minnesota.
  2. Gilles Moulay: Department of Cardiovascular Diseases, Mayo Clinic, Rochester, Minnesota.
  3. Adam J Guenzel: Department of Cardiovascular Diseases, Mayo Clinic, Rochester, Minnesota.
  4. Weibin Liu: Department of Cardiovascular Diseases, Mayo Clinic, Rochester, Minnesota.
  5. Teresa D Decklever: Division of Nuclear Medicine, Mayo Clinic, Rochester, Minnesota.
  6. Kelly L Classic: Division of Medical Physics, Mayo Clinic, Rochester, Minnesota.
  7. Linh Pham: Department of Molecular Medicine, Mayo Clinic, Rochester, Minnesota; and.
  8. Horng H Chen: Department of Cardiovascular Diseases, Mayo Clinic, Rochester, Minnesota.
  9. John C Burnett: Department of Cardiovascular Diseases, Mayo Clinic, Rochester, Minnesota.
  10. Stephen J Russell: Department of Molecular Medicine, Mayo Clinic, Rochester, Minnesota; and.
  11. Margaret M Redfield: Department of Cardiovascular Diseases, Mayo Clinic, Rochester, Minnesota; redfield.margaret@mayo.edu.

Abstract

Breast cancer radiotherapy increases the risk of heart failure with preserved ejection fraction (HFpEF). Cardiomyocytes are highly radioresistant, but radiation specifically affects coronary microvascular endothelial cells, with subsequent microvascular inflammation and rarefaction. The effects of radiation on left ventricular (LV) diastolic function are poorly characterized. We hypothesized that cardiac radiation exposure may result in diastolic dysfunction without reduced EF. Global cardiac expression of the sodium-iodide symporter (NIS) was induced by cardiotropic gene (adeno-associated virus serotype 9) delivery to 5-wk-old rats. SPECT/CT (I) measurement of cardiac iodine uptake allowed calculation of the I doses needed to deliver 10- or 20-Gy cardiac radiation at 10 wk of age. Radiated (Rad; 10 or 20 Gy) and control rats were studied at 30 wk of age. Body weight, blood pressure, and heart rate were similar in control and Rad rats. Compared with control rats, Rad rats had impaired exercise capacity, increased LV diastolic stiffness, impaired LV relaxation, and elevated filling pressures but similar LV volume, EF, end-systolic elastance, preload recruitable stroke work, and peak +dP/d Pathology revealed reduced microvascular density, mild concentric cardiomyocyte hypertrophy, and increased LV fibrosis in Rad rats compared with control rats. In the Rad myocardium, oxidative stress was increased and in vivo PKG activity was decreased. Experimental cardiac radiation exposure resulted in diastolic dysfunction without reduced EF. These data provide insight into the association between cardiac radiation exposure and HFpEF risk and lend further support for the importance of inflammation-related coronary microvascular compromise in HFpEF. Cardiac radiation exposure during radiotherapy increases the risk of heart failure with preserved ejection fraction. In a novel rodent model, cardiac radiation exposure resulted in coronary microvascular rarefaction, oxidative stress, impaired PKG signaling, myocardial fibrosis, mild cardiomyocyte hypertrophy, left ventricular diastolic dysfunction, and elevated left ventricular filling pressures despite preserved ejection fraction.

Keywords

References

  1. IEEE Trans Biomed Eng. 2005 Oct;52(10):1654-61 [PMID: 16235651]
  2. Am J Physiol. 1994 Feb;266(2 Pt 2):H730-40 [PMID: 8141374]
  3. Circ Heart Fail. 2016 Jul;9(7):null [PMID: 27413034]
  4. Am J Physiol Cell Physiol. 2009 Apr;296(4):C654-62 [PMID: 19052257]
  5. Transplant Proc. 2010 Jun;42(5):1888-94 [PMID: 20620544]
  6. Circulation. 2017 Apr 11;135(15):1388-1396 [PMID: 28132957]
  7. Circ Res. 1998 Jun 29;82(12):1298-305 [PMID: 9648726]
  8. Ann ICRP. 2012 Oct-Dec;41(3-4):72-9 [PMID: 23089006]
  9. Circulation. 2013 Sep 10;128(11):1225-33 [PMID: 23912910]
  10. Int J Radiat Biol. 2014 Apr;90(4):284-90 [PMID: 24467328]
  11. Radiology. 1971 Nov;101(2):429-33 [PMID: 5114783]
  12. Cold Spring Harb Protoc. 2011 May 01;2011(5):pdb.prot5623 [PMID: 21536757]
  13. Radiother Oncol. 2012 May;103(2):143-50 [PMID: 22112779]
  14. Am J Physiol Heart Circ Physiol. 2015 Nov;309(9):H1407-18 [PMID: 26342070]
  15. J Am Heart Assoc. 2016 Feb 23;5(2):null [PMID: 26908404]
  16. J Heart Lung Transplant. 2011 Oct;30(10):1186-96 [PMID: 21962020]
  17. Eur Heart J. 2017 Feb 14;38(7):478-488 [PMID: 26843279]
  18. Clin Oncol (R Coll Radiol). 2013 Oct;25(10):617-24 [PMID: 23876528]
  19. Circulation. 2008 Jan 1;117(1):43-51 [PMID: 18071071]
  20. J Mol Cell Cardiol. 1998 Nov;30(11):2495-506 [PMID: 9925384]
  21. Thyroid Res. 2010 Jun 09;3(1):3 [PMID: 20529371]
  22. J Gen Physiol. 2006 Jul;128(1):3-14 [PMID: 16769793]
  23. Front Biosci. 2005 May 01;10:1313-28 [PMID: 15769627]
  24. Circulation. 2015 Apr 7;131(14):1247-59 [PMID: 25637629]
  25. Radiat Res. 2016 Aug;186(2):153-61 [PMID: 27387862]
  26. Gene Ther. 2013 May;20(5):567-74 [PMID: 22972493]
  27. Int J Radiat Oncol Biol Phys. 1985 Apr;11(4):801-8 [PMID: 3980275]
  28. Int J Radiat Oncol Biol Phys. 2007 Jan 1;67(1):10-8 [PMID: 17189062]
  29. J Nucl Med. 2005 Jan;46(1):75-88 [PMID: 15632037]
  30. JACC Heart Fail. 2016 Apr;4(4):312-24 [PMID: 26682792]
  31. Circulation. 2012 Aug 14;126(7):830-9 [PMID: 22806632]
  32. J Nucl Med. 1999 Jan;40(1):3S-10S [PMID: 9935082]
  33. Am J Physiol Heart Circ Physiol. 2009 Nov;297(5):H1697-710 [PMID: 19734360]
  34. N Engl J Med. 2007 Feb 22;356(8):830-40 [PMID: 17314342]
  35. Organogenesis. 2010 Jan-Mar;6(1):1-10 [PMID: 20592859]
  36. Circ Heart Fail. 2016 Oct;9(10 ): [PMID: 27758811]
  37. Circ Heart Fail. 2013 Nov;6(6):1239-49 [PMID: 24014826]
  38. Circ Heart Fail. 2011 Jan;4(1):44-52 [PMID: 21075869]
  39. Lab Invest. 1973 Aug;29(2):244-57 [PMID: 4724850]
  40. Sci Signal. 2012 Jul 24;5(234):ra52 [PMID: 22827996]
  41. J Am Coll Cardiol. 2013 Jul 23;62(4):263-71 [PMID: 23684677]
  42. Physiol Rev. 1955 Jan;35(1):123-9 [PMID: 14356924]
  43. Circulation. 2005 Feb 22;111(7):879-86 [PMID: 15710767]
  44. Gene Ther. 2011 Jan;18(1):43-52 [PMID: 20703310]
  45. Int J Radiat Oncol Biol Phys. 2015 Nov 15;93(4):845-53 [PMID: 26530753]
  46. Anesth Analg. 2015 Sep;121(3):610-23 [PMID: 26287294]
  47. J Nucl Med. 1968 Feb;:Suppl 1:9-14 [PMID: 5646656]
  48. Rom J Morphol Embryol. 2012;53(1):67-71 [PMID: 22395502]
  49. J Am Coll Cardiol. 2011 Feb 22;57(8):977-85 [PMID: 21329845]
  50. Am J Pathol. 1970 May;59(2):299-316 [PMID: 5443637]
  51. Am J Physiol Heart Circ Physiol. 2005 Aug;289(2):H501-12 [PMID: 16014610]
  52. Circ Heart Fail. 2016 Jul;9(7): [PMID: 27413038]
  53. Annu Rev Pharmacol Toxicol. 2017 Jan 6;57:455-479 [PMID: 27732797]
  54. Int J Radiat Oncol Biol Phys. 2005 Sep 1;63(1):214-23 [PMID: 16111592]
  55. J Am Heart Assoc. 2014 Dec 02;3(6):e001293 [PMID: 25468660]
  56. JACC Cardiovasc Imaging. 2014 Oct;7(10 ):991-7 [PMID: 25240451]
  57. Circ Heart Fail. 2010 Mar;3(2):268-76 [PMID: 20035066]
  58. Nature. 1996 Feb 1;379(6564):458-60 [PMID: 8559252]
  59. IEEE Trans Biomed Eng. 2007 Aug;54(8):1480-9 [PMID: 17694869]
  60. Cancer Gene Ther. 2013 Nov;20(11):638-41 [PMID: 24030210]
  61. Circulation. 2015 Feb 10;131(6):550-9 [PMID: 25552356]
  62. Br J Radiol. 1997 Oct;70(838):1004-9 [PMID: 9404203]
  63. N Engl J Med. 2013 Mar 14;368(11):987-98 [PMID: 23484825]

Grants

  1. R01 HL105418/NHLBI NIH HHS

MeSH Term

Animals
Cyclic GMP
Cyclic GMP-Dependent Protein Kinases
Dependovirus
Diastole
Dose-Response Relationship, Radiation
Genetic Vectors
Male
Myocardium
Oxidative Stress
Radiation Injuries, Experimental
Rats, Sprague-Dawley
Signal Transduction
Stroke Volume
Symporters
Time Factors
Transduction, Genetic
Ventricular Dysfunction, Left
Ventricular Function, Left

Chemicals

Symporters
sodium-iodide symporter
Cyclic GMP-Dependent Protein Kinases
Cyclic GMP

Word Cloud

Created with Highcharts 10.0.0radiationcardiacdiastolicratsexposurepreservedejectionfractionmicrovascularLVdysfunctionRadheartcoronaryventricularcontrolriskfailureHFpEFleftreducedEFimpairedincreasedradiotherapyincreasesrarefactionwithout10wkagesimilarelevatedfillingpressuresmildcardiomyocytehypertrophyfibrosisoxidativestressPKGExperimentalresultedmodelBreastcancerCardiomyocyteshighlyradioresistantspecificallyaffectsendothelialcellssubsequentinflammationeffectsfunctionpoorlycharacterizedhypothesizedmayresultGlobalexpressionsodium-iodidesymporterNISinducedcardiotropicgeneadeno-associatedvirusserotype9delivery5-wk-oldSPECT/CTmeasurementiodineuptakeallowedcalculationdosesneededdeliver10-20-GyRadiated20Gystudied30BodyweightbloodpressurerateComparedexercisecapacitystiffnessrelaxationvolumeend-systolicelastancepreloadrecruitablestrokeworkpeak+dP/dPathologyrevealeddensityconcentriccomparedmyocardiumvivoactivitydecreaseddataprovideinsightassociationlendsupportimportanceinflammation-relatedcompromiseCardiacnovelrodentsignalingmyocardialdespiteinducesanimalmicrovasculature

Similar Articles

Cited By