Hierarchical High-Order Functional Connectivity Networks and Selective Feature Fusion for MCI Classification.

Xiaobo Chen, Han Zhang, Seong-Whan Lee, Dinggang Shen, Alzheimer’s Disease Neuroimaging Initiative
Author Information
  1. Xiaobo Chen: Department of Radiology and BRIC, University of North Carolina at Chapel Hill, 130 Mason Farm Road, Chapel Hill, NC, 27599, USA. ORCID
  2. Han Zhang: Department of Radiology and BRIC, University of North Carolina at Chapel Hill, 130 Mason Farm Road, Chapel Hill, NC, 27599, USA.
  3. Seong-Whan Lee: Department of Brain and Cognitive Engineering, Korea University, Seoul, 02841, Republic of Korea.
  4. Dinggang Shen: Department of Radiology and BRIC, University of North Carolina at Chapel Hill, 130 Mason Farm Road, Chapel Hill, NC, 27599, USA. dgshen@med.unc.edu.

Abstract

Conventional Functional connectivity (FC) analysis focuses on characterizing the correlation between two brain regions, whereas the high-order FC can model the correlation between two brain region pairs. To reduce the number of brain region pairs, clustering is applied to group all the brain region pairs into a small number of clusters. Then, a high-order FC network can be constructed based on the clustering result. By varying the number of clusters, multiple high-order FC networks can be generated and the one with the best overall performance can be finally selected. However, the important information contained in other networks may be simply discarded. To address this issue, in this paper, we propose to make full use of the information contained in all high-order FC networks. First, an agglomerative hierarchical clustering technique is applied such that the clustering result in one layer always depends on the previous layer, thus making the high-order FC networks in the two consecutive layers highly correlated. As a result, the features extracted from high-order FC network in each layer can be decomposed into two parts (blocks), i.e., one is redundant while the other might be informative or complementary, with respect to its previous layer. Then, a selective feature fusion method, which combines sequential forward selection and sparse regression, is developed to select a feature set from those informative feature blocks for classification. Experimental results confirm that our novel method outperforms the best single high-order FC network in diagnosis of mild cognitive impairment (MCI) subjects.

Keywords

References

  1. Neuroinformatics. 2015 Jul;13(3):277-95 [PMID: 25501275]
  2. IEEE Trans Neural Netw Learn Syst. 2016 Nov;27(11):2256-2267 [PMID: 26415189]
  3. Proc Natl Acad Sci U S A. 2007 Nov 20;104(47):18760-5 [PMID: 18003904]
  4. Brain. 2007 Jul;130(Pt 7):1777-86 [PMID: 17533169]
  5. Neurobiol Aging. 2006 Nov;27(11):1604-12 [PMID: 16226349]
  6. Med Image Comput Comput Assist Interv. 2015 Oct;9349:573-580 [PMID: 27054199]
  7. Brain Struct Funct. 2015 Mar;220(2):841-59 [PMID: 24363140]
  8. Neurology. 1984 Jul;34(7):939-44 [PMID: 6610841]
  9. Hum Brain Mapp. 2007 Oct;28(10):967-78 [PMID: 17133390]
  10. Hum Brain Mapp. 2016 Sep;37(9):3282-96 [PMID: 27144538]
  11. Brain Imaging Behav. 2016 Jun;10(2):342-56 [PMID: 26123390]
  12. Alzheimers Dement. 2008 Nov;4(6):443-6 [PMID: 18945646]
  13. Cereb Cortex. 2007 Jan;17(1):92-9 [PMID: 16452642]
  14. Lancet. 2006 Apr 15;367(9518):1262-70 [PMID: 16631882]
  15. Nature. 1998 Jun 4;393(6684):440-2 [PMID: 9623998]
  16. Int J Neural Syst. 2017 Mar;27(2):1650032 [PMID: 27377661]
  17. Neuroimage. 2014 Nov 1;101:569-82 [PMID: 25042445]
  18. Brain. 2009 Jan;132(Pt 1):213-24 [PMID: 18952674]
  19. J Cereb Blood Flow Metab. 1993 Jan;13(1):5-14 [PMID: 8417010]
  20. Med Image Comput Comput Assist Interv. 2014;17(Pt 2):724-32 [PMID: 25485444]
  21. Biostatistics. 2008 Jul;9(3):432-41 [PMID: 18079126]
  22. Biomed Res Int. 2014;2014:380531 [PMID: 25309910]
  23. IEEE Trans Biomed Eng. 2015 Apr;62(4):1132-40 [PMID: 25423647]
  24. Alzheimers Dement. 2007 Jul;3(3):186-91 [PMID: 19595937]
  25. Front Hum Neurosci. 2013 Sep 02;7:520 [PMID: 24032010]
  26. Hum Brain Mapp. 2005 Dec;26(4):231-9 [PMID: 15954139]
  27. IEEE Trans Biomed Eng. 2014 Feb;61(2):576-89 [PMID: 24108708]
  28. Brain Struct Funct. 2014 Mar;219(2):641-56 [PMID: 23468090]
  29. PLoS One. 2013 May 06;8(5):e62867 [PMID: 23671641]
  30. Neuroimage. 2011 Apr 1;55(3):856-67 [PMID: 21236349]
  31. Curr Opin Neurol. 2008 Aug;21(4):424-30 [PMID: 18607202]
  32. Neuroimage. 2009 Feb 15;44(4):1415-22 [PMID: 19027862]
  33. Neuroimage. 2010 Sep;52(3):1059-69 [PMID: 19819337]
  34. Neuroimage. 2014 Nov 1;101:778-86 [PMID: 25111470]
  35. Neuroimage. 2010 Apr 15;50(3):935-49 [PMID: 20079441]
  36. IEEE Trans Pattern Anal Mach Intell. 2009 Feb;31(2):210-27 [PMID: 19110489]
  37. Arch Neurol. 2001 Dec;58(12):1985-92 [PMID: 11735772]
  38. Nat Rev Neurosci. 2007 Sep;8(9):700-11 [PMID: 17704812]
  39. Front Aging Neurosci. 2014 Aug 07;6:168 [PMID: 25147522]
  40. PLoS One. 2011;6(7):e21935 [PMID: 21818280]
  41. Med Image Comput Comput Assist Interv. 2016 Oct;9900:37-45 [PMID: 28642938]
  42. PLoS One. 2012;7(5):e37828 [PMID: 22666397]

Grants

  1. R01 EB008374/NIBIB NIH HHS
  2. R01 AG041721/NIA NIH HHS
  3. R01 AG049371/NIA NIH HHS
  4. R01 AG042599/NIA NIH HHS
  5. RF1 AG053867/NIA NIH HHS
  6. R01 EB006733/NIBIB NIH HHS
  7. R01 EB022880/NIBIB NIH HHS

MeSH Term

Brain
Brain Mapping
Case-Control Studies
Cluster Analysis
Cognitive Dysfunction
Female
Humans
Image Processing, Computer-Assisted
Magnetic Resonance Imaging
Male
Models, Neurological
Neural Pathways
Oxygen

Chemicals

Oxygen

Word Cloud

Created with Highcharts 10.0.0FChigh-ordercanclusteringtwobrainnetworknetworkslayerFunctionalregionpairsnumberresultonefeatureconnectivitycorrelationappliedclustersbestinformationcontainedpreviousblocksinformativemethoddiagnosisMCIHierarchicalConventionalanalysisfocusescharacterizingregionswhereasmodelreducegroupsmallconstructedbasedvaryingmultiplegeneratedoverallperformancefinallyselectedHoweverimportantmaysimplydiscardedaddressissuepaperproposemakefulluseFirstagglomerativehierarchicaltechniquealwaysdependsthusmakingconsecutivelayershighlycorrelatedfeaturesextracteddecomposedpartsieredundantmightcomplementaryrespectselectivefusioncombinessequentialforwardselectionsparseregressiondevelopedselectsetclassificationExperimentalresultsconfirmnoveloutperformssinglemildcognitiveimpairmentsubjectsHigh-OrderConnectivityNetworksSelectiveFeatureFusionClassificationBraindiseaseHigh-order

Similar Articles

Cited By