Genome-wide identification of markers for selecting higher oil content in oil palm.

Bin Bai, Le Wang, May Lee, Yingjun Zhang, Yuzer Alfiko, Bao Qing Ye, Zi Yi Wan, Chin Huat Lim, Antonius Suwanto, Nam-Hai Chua, Gen Hua Yue
Author Information
  1. Bin Bai: Temasek Life Sciences Laboratory, 1 Research Link, National University of Singapore, Singapore, 117604, Singapore.
  2. Le Wang: Temasek Life Sciences Laboratory, 1 Research Link, National University of Singapore, Singapore, 117604, Singapore.
  3. May Lee: Temasek Life Sciences Laboratory, 1 Research Link, National University of Singapore, Singapore, 117604, Singapore.
  4. Yingjun Zhang: Temasek Life Sciences Laboratory, 1 Research Link, National University of Singapore, Singapore, 117604, Singapore.
  5. Rahmadsyah: R & D Department, Wilmar International Plantation, Palembang, Indonesia.
  6. Yuzer Alfiko: Biotech Lab, Wilmar International, Jakarta, Indonesia.
  7. Bao Qing Ye: Temasek Life Sciences Laboratory, 1 Research Link, National University of Singapore, Singapore, 117604, Singapore.
  8. Zi Yi Wan: Temasek Life Sciences Laboratory, 1 Research Link, National University of Singapore, Singapore, 117604, Singapore.
  9. Chin Huat Lim: R & D Department, Wilmar International Plantation, Palembang, Indonesia.
  10. Antonius Suwanto: Biotech Lab, Wilmar International, Jakarta, Indonesia.
  11. Nam-Hai Chua: Temasek Life Sciences Laboratory, 1 Research Link, National University of Singapore, Singapore, 117604, Singapore.
  12. Gen Hua Yue: Temasek Life Sciences Laboratory, 1 Research Link, National University of Singapore, Singapore, 117604, Singapore. genhua@tll.org.sg. ORCID

Abstract

BACKGROUND: Oil palm (Elaeis guineensis, Jacq.) is the most important source of edible oil. The improvement of oil yield is currently slow in conventional breeding programs due to long generation intervals. Marker-assisted selection (MAS) has the potential to accelerate genetic improvement. To identify DNA markers associated with oil content traits for MAS, we performed quantitative trait loci (QTL) mapping using genotyping by sequencing (GBS) in a breeding population derived from a cross between Deli Dura and Ghana Pisifera, containing 153 F trees.
RESULTS: We constructed a high-density linkage map containing 1357 SNPs and 123 microsatellites. The 16 linkage groups (LGs) spanned 1527 cM, with an average marker space of 1.03 cM. One significant and three suggestive QTL for oil to bunch (O/B) and oil to dry mesocarp (O/DM) were mapped on LG1, LG8, and LG10 in a F breeding population, respectively. These QTL explained 7.6-13.3% of phenotypic variance. DNA markers associated with oil content in these QTL were identified. Trees with beneficial genotypes at two QTL for O/B showed an average O/B of 30.97%, significantly (P < 0.01) higher than that of trees without any beneficial QTL genotypes (average O/B of 28.24%). QTL combinations showed that the higher the number of QTL with beneficial genotypes, the higher the resulting average O/B in the breeding population.
CONCLUSIONS: A linkage map with 1480 DNA markers was constructed and used to identify QTL for oil content traits. Pyramiding the identified QTL with beneficial genotypes associated with oil content traits using DNA markers has the potential to accelerate genetic improvement for oil yield in the breeding population of oil palm.

Keywords

References

  1. Plant Biotechnol J. 2015 Feb;13(2):211-21 [PMID: 25213593]
  2. PLoS One. 2015 Oct 02;10(10):e0139406 [PMID: 26430886]
  3. Theor Appl Genet. 2016 Apr;129(4):703-715 [PMID: 26724806]
  4. Genomics. 2015 May;105(5-6):288-95 [PMID: 25702931]
  5. Theor Appl Genet. 2006 Jun;113(1):33-8 [PMID: 16614833]
  6. Front Plant Sci. 2015 Mar 27;6:190 [PMID: 25870604]
  7. Mol Breed. 2013;32:327-338 [PMID: 23976874]
  8. Mol Ecol. 2000 Jul;9(7):1007-9 [PMID: 10886670]
  9. Biotechnol Biofuels. 2015 Sep 25;8:160 [PMID: 26413159]
  10. Theor Appl Genet. 2015 Dec;128(12):2351-65 [PMID: 26239409]
  11. BMC Plant Biol. 2009 Aug 26;9:114 [PMID: 19706196]
  12. PLoS One. 2014 May 09;9(5):e95412 [PMID: 24816555]
  13. Theor Appl Genet. 1975 Jan;46(7):319-30 [PMID: 24420173]
  14. G3 (Bethesda). 2011 Aug;1(3):171-82 [PMID: 22384329]
  15. PLoS One. 2011 May 04;6(5):e19379 [PMID: 21573248]
  16. Theor Appl Genet. 2008 Apr;116(6):815-24 [PMID: 18219476]
  17. DNA Res. 2016 Dec;23 (6):527-533 [PMID: 27426468]
  18. PLoS One. 2013;8(1):e53076 [PMID: 23382832]
  19. Theor Appl Genet. 2010 May;120(8):1673-87 [PMID: 20182696]
  20. Nature. 2013 Aug 15;500(7462):335-9 [PMID: 23883927]
  21. J Hered. 2002 Jan-Feb;93(1):77-8 [PMID: 12011185]
  22. BMC Genomics. 2014 Apr 27;15:309 [PMID: 24767304]
  23. Sci Rep. 2015 Nov 10;5:16358 [PMID: 26553309]
  24. Sci Rep. 2015 Feb 04;5:8232 [PMID: 25648560]
  25. Sci Rep. 2016 Jan 08;6:19075 [PMID: 26743827]
  26. Theor Appl Genet. 2005 Feb;110(4):754-65 [PMID: 15723275]
  27. PLoS One. 2012;7(5):e37135 [PMID: 22675423]

MeSH Term

Arecaceae
Chromosome Mapping
Genome, Plant
Genotyping Techniques
Plant Oils
Quantitative Trait Loci

Chemicals

Plant Oils

Word Cloud

Created with Highcharts 10.0.0oilQTLcontentbreedingmarkersO/BDNApopulationaveragebeneficialgenotypeshigherpalmimprovementyieldassociatedtraitslinkageOilMASpotentialaccelerategeneticidentifyusingcontainingtreesconstructedmapidentifiedshowedBACKGROUND:ElaeisguineensisJacqimportantsourceediblecurrentlyslowconventionalprogramsduelonggenerationintervalsMarker-assistedselectionperformedquantitativetraitlocimappinggenotypingsequencingGBSderivedcrossDeliDuraGhanaPisifera153 FRESULTS:high-density1357SNPs123microsatellites16groupsLGsspanned1527 cMmarkerspace103 cMOnesignificantthreesuggestivebunchdrymesocarpO/DMmappedLG1LG8LG10Frespectivelyexplained76-133%phenotypicvarianceTreestwo3097%significantlyP < 001without2824%combinationsnumberresultingCONCLUSIONS:1480usedPyramidingGenome-wideidentificationselectingMappingPalmRAD-seq

Similar Articles

Cited By