Diabetes and Prediabetes Classification Using Glycemic Variability Indices From Continuous Glucose Monitoring Data.

Giada Acciaroli, Giovanni Sparacino, Liisa Hakaste, Andrea Facchinetti, Giorgio Maria Di Nunzio, Alessandro Palombit, Tiinamaija Tuomi, Rafael Gabriel, Jaime Aranda, Saturio Vega, Claudio Cobelli
Author Information
  1. Giada Acciaroli: 1 Department of Information Engineering, University of Padova, Padova, Italy.
  2. Giovanni Sparacino: 1 Department of Information Engineering, University of Padova, Padova, Italy.
  3. Liisa Hakaste: 2 Endocrinology, Abdominal Centre, University of Helsinki and Helsinki University Hospital, Helsinki, Finland.
  4. Andrea Facchinetti: 1 Department of Information Engineering, University of Padova, Padova, Italy.
  5. Giorgio Maria Di Nunzio: 1 Department of Information Engineering, University of Padova, Padova, Italy.
  6. Alessandro Palombit: 1 Department of Information Engineering, University of Padova, Padova, Italy.
  7. Tiinamaija Tuomi: 2 Endocrinology, Abdominal Centre, University of Helsinki and Helsinki University Hospital, Helsinki, Finland.
  8. Rafael Gabriel: 5 Escuela Nacional de Sanidad, Instituto de Salud Carlos III, Madrid, Spain.
  9. Jaime Aranda: 6 Servicio de Endocrinologia Hospital General de Cuenca, Cuenca, Spain.
  10. Saturio Vega: 7 Centro de Salud de Arevalo, Avila, Spain.
  11. Claudio Cobelli: 1 Department of Information Engineering, University of Padova, Padova, Italy.

Abstract

BACKGROUND: Tens of glycemic variability (GV) indices are available in the literature to characterize the dynamic properties of glucose concentration profiles from continuous glucose monitoring (CGM) sensors. However, how to exploit the plethora of GV indices for classifying subjects is still controversial. For instance, the basic problem of using GV indices to automatically determine if the subject is healthy rather than affected by impaired glucose tolerance (IGT) or type 2 diabetes (T2D), is still unaddressed. Here, we analyzed the feasibility of using CGM-based GV indices to distinguish healthy from IGT&T2D and IGT from T2D subjects by means of a machine-learning approach.
METHODS: The data set consists of 102 subjects belonging to three different classes: 34 healthy, 39 IGT, and 29 T2D subjects. Each subject was monitored for a few days by a CGM sensor that produced a glucose profile from which we extracted 25 GV indices. We used a two-step binary logistic regression model to classify subjects. The first step distinguishes healthy subjects from IGT&T2D, the second step classifies subjects into either IGT or T2D.
RESULTS: Healthy subjects are distinguished from subjects with diabetes (IGT&T2D) with 91.4% accuracy. Subjects are further subdivided into IGT or T2D classes with 79.5% accuracy. Globally, the classification into the three classes shows 86.6% accuracy.
CONCLUSIONS: Even with a basic classification strategy, CGM-based GV indices show good accuracy in classifying healthy and subjects with diabetes. The classification into IGT or T2D seems, not surprisingly, more critical, but results encourage further investigation of the present research.

Keywords

References

  1. Acta Med Scand. 1965 Jan;177:95-102 [PMID: 14251860]
  2. Diabetes Res Clin Pract. 2016 Dec;122:62-70 [PMID: 27810687]
  3. Diabetes. 1970 Sep;19(9):644-55 [PMID: 5469118]
  4. Diabetes Care. 2016 Apr;39(4):502-10 [PMID: 27208366]
  5. Diabetes Technol Ther. 2016 Feb;18 Suppl 2:S3-S13 [PMID: 26784127]
  6. Diabet Med. 2007 Jul;24(7):753-8 [PMID: 17459094]
  7. Diabetes Technol Ther. 2014 Oct;16(10):644-52 [PMID: 24956070]
  8. J Diabetes Sci Technol. 2012 May 01;6(3):712-5 [PMID: 22768904]
  9. Diabetes Care. 2012 Oct;35(10):2076-82 [PMID: 22688551]
  10. J Diabetes Complications. 2017 Jan;31(1):280-287 [PMID: 27818105]
  11. J Diabetes Complications. 2017 Feb;31(2):479-482 [PMID: 27343028]
  12. Diabetes Technol Ther. 2013 Jun;15(6):461-5 [PMID: 23631606]
  13. Diabet Med. 2010 Aug;27(8):868-71 [PMID: 20653742]
  14. Curr Opin Endocrinol Diabetes Obes. 2013 Apr;20(2):106-11 [PMID: 23422244]
  15. World J Pediatr. 2008 Feb;4(1):26-30 [PMID: 18402248]
  16. Diabetes Technol Ther. 2011 Mar;13(3):296-302 [PMID: 21291334]
  17. Diabetes Care. 2006 Nov;29(11):2433-8 [PMID: 17065680]
  18. Diabetes Technol Ther. 2009 Sep;11(9):551-65 [PMID: 19764834]
  19. Diabetes. 2013 May;62(5):1405-8 [PMID: 23613566]
  20. Horm Metab Res. 1995 Jan;27(1):41-2 [PMID: 7729793]
  21. J Diabetes Sci Technol. 2016 Jun 28;10(4):885-91 [PMID: 26880391]
  22. J Diabetes Sci Technol. 2015 Jul 31;10(1):119-24 [PMID: 26232371]
  23. J Diabetes Sci Technol. 2014 Sep;8(5):1042-7 [PMID: 24876453]
  24. J Diabetes Sci Technol. 2011 Jul 01;5(4):871-8 [PMID: 21880228]
  25. Diabetes Obes Metab. 2010 Apr;12(4):288-98 [PMID: 20380649]
  26. Diabetes Care. 2015 Dec;38(12):2354-69 [PMID: 26604281]
  27. Diabetes Technol Ther. 2009 Jun;11 Suppl 1:S55-67 [PMID: 19469679]
  28. Diabetes Technol Ther. 2013 Jun;15(6):455-60 [PMID: 23617251]
  29. Cardiovasc Diabetol. 2011 Feb 25;10:19 [PMID: 21349201]
  30. Diabetes Care. 1997 Nov;20(11):1655-8 [PMID: 9353603]
  31. BMC Endocr Disord. 2015 May 01;15:22 [PMID: 25929322]
  32. Diabetes Care. 2015 Aug;38(8):1610-4 [PMID: 26207054]
  33. Int J Cardiol. 2016 Jul 15;215:263-8 [PMID: 27128543]
  34. Diabetes Technol Ther. 2009 Jun;11 Suppl 1:S45-54 [PMID: 19469677]
  35. J Pediatr Endocrinol Metab. 2016 Oct 1;29(10):1129-1133 [PMID: 27658133]

MeSH Term

Blood Glucose
Databases, Factual
Diabetes Mellitus, Type 2
Glucose Intolerance
Humans
Prediabetic State
Sensitivity and Specificity

Chemicals

Blood Glucose

Word Cloud

Created with Highcharts 10.0.0subjectsGVindicesglucoseIGTT2DhealthydiabetesaccuracyclassificationIGT&T2DglycemicvariabilitycontinuousmonitoringCGMclassifyingstillbasicusingsubjectimpairedtolerancetype2CGM-basedthreestepclassesBACKGROUND:TensavailableliteraturecharacterizedynamicpropertiesconcentrationprofilessensorsHoweverexploitplethoracontroversialinstanceproblemautomaticallydetermineratheraffectedunaddressedanalyzedfeasibilitydistinguishmeansmachine-learningapproachMETHODS:datasetconsists102belongingdifferentclasses:343929monitoreddayssensorproducedprofileextracted25usedtwo-stepbinarylogisticregressionmodelclassifyfirstdistinguishessecondclassifieseitherRESULTS:Healthydistinguished914%Subjectssubdivided795%Globallyshows866%CONCLUSIONS:EvenstrategyshowgoodseemssurprisinglycriticalresultsencourageinvestigationpresentresearchDiabetesPrediabetesClassificationUsingGlycemicVariabilityIndicesContinuousGlucoseMonitoringData

Similar Articles

Cited By