Identification of conserved genes triggering puberty in European sea bass males (Dicentrarchus labrax) by microarray expression profiling.

Mercedes Blázquez, Paula Medina, Berta Crespo, Ana Gómez, Silvia Zanuy
Author Information
  1. Mercedes Blázquez: Instituto de Acuicultura de Torre la Sal, Consejo Superior de Investigaciones Científicas (IATS-CSIC), Ribera de Cabanes, 12595, Castellón, Spain. blazquez@icm.csic.es. ORCID
  2. Paula Medina: Instituto de Acuicultura de Torre la Sal, Consejo Superior de Investigaciones Científicas (IATS-CSIC), Ribera de Cabanes, 12595, Castellón, Spain.
  3. Berta Crespo: Instituto de Acuicultura de Torre la Sal, Consejo Superior de Investigaciones Científicas (IATS-CSIC), Ribera de Cabanes, 12595, Castellón, Spain.
  4. Ana Gómez: Instituto de Acuicultura de Torre la Sal, Consejo Superior de Investigaciones Científicas (IATS-CSIC), Ribera de Cabanes, 12595, Castellón, Spain.
  5. Silvia Zanuy: Instituto de Acuicultura de Torre la Sal, Consejo Superior de Investigaciones Científicas (IATS-CSIC), Ribera de Cabanes, 12595, Castellón, Spain. s.zanuy@csic.es.

Abstract

BACKGROUND: Spermatogenesis is a complex process characterized by the activation and/or repression of a number of genes in a spatio-temporal manner. Pubertal development in males starts with the onset of the first spermatogenesis and implies the division of primary spermatogonia and their subsequent entry into meiosis. This study is aimed at the characterization of genes involved in the onset of puberty in European sea bass, and constitutes the first transcriptomic approach focused on meiosis in this species.
RESULTS: European sea bass testes collected at the onset of puberty (first successful reproduction) were grouped in stage I (resting stage), and stage II (proliferative stage). Transition from stage I to stage II was marked by an increase of 11ketotestosterone (11KT), the main fish androgen, whereas the transcriptomic study resulted in 315 genes differentially expressed between the two stages. The onset of puberty induced 1) an up-regulation of genes involved in cell proliferation, cell cycle and meiosis progression, 2) changes in genes related with reproduction and growth, and 3) a down-regulation of genes included in the retinoic acid (RA) signalling pathway. The analysis of GO-terms and biological pathways showed that cell cycle, cell division, cellular metabolic processes, and reproduction were affected, consistent with the early events that occur during the onset of puberty. Furthermore, changes in the expression of three RA nuclear receptors point at the importance of the RA-signalling pathway during this period, in agreement with its role in meiosis.
CONCLUSION: The results contribute to boost our knowledge of the early molecular and endocrine events that trigger pubertal development and the onset of spermatogenesis in fish. These include an increase in 11KT plasma levels and changes in the expression of several genes involved in cell proliferation, cell cycle progression, meiosis or RA-signalling pathway. Moreover, the results can be applied to study meiosis in this economically important fish species for Mediterranean countries, and may help to develop tools for its sustainable aquaculture.

Keywords

References

  1. Arch Pathol Lab Med. 1976 Aug;100(8):405-14 [PMID: 60092]
  2. Mol Cell Endocrinol. 2009 Dec 10;313(1-2):23-35 [PMID: 19737598]
  3. Biol Reprod. 2004 May;70(5):1380-91 [PMID: 14724132]
  4. Proc Natl Acad Sci U S A. 1991 Jul 1;88(13):5774-8 [PMID: 2062857]
  5. Nat Commun. 2014 Dec 23;5:5770 [PMID: 25534655]
  6. Fish Physiol Biochem. 2009 Mar;35(1):197-206 [PMID: 18716890]
  7. Gen Comp Endocrinol. 2005 May 15;142(1-2):3-19 [PMID: 15862543]
  8. Biol Reprod. 2016 Jun;94(6):141 [PMID: 27226310]
  9. Gen Comp Endocrinol. 1990 Jun;78(3):361-73 [PMID: 2347486]
  10. Mol Biol Evol. 1987 Jul;4(4):406-25 [PMID: 3447015]
  11. Sci Rep. 2015 May 15;5:10131 [PMID: 25976364]
  12. Endocrinology. 2009 Jan;150(1):357-65 [PMID: 18755797]
  13. Gen Comp Endocrinol. 2015 Sep 15;221:31-41 [PMID: 26002037]
  14. Curr Biol. 2012 Nov 20;22(22):R966-80 [PMID: 23174302]
  15. Cytogenet Genome Res. 2004;105(2-4):189-202 [PMID: 15237207]
  16. BMC Genomics. 2009 Nov 20;10:546 [PMID: 19925684]
  17. Gen Comp Endocrinol. 2012 Mar 1;176(1):70-8 [PMID: 22227219]
  18. Mol Endocrinol. 2000 Sep;14 (9):1483-97 [PMID: 10976925]
  19. Sex Dev. 2015 ;9(6):297-315 [PMID: 26905731]
  20. PLoS One. 2013 Sep 10;8(9):e73951 [PMID: 24040125]
  21. Biol Reprod. 2012 Aug 09;87(2):35 [PMID: 22649073]
  22. Mol Cell Endocrinol. 2016 Dec 5;437:237-251 [PMID: 27566230]
  23. Semin Cell Dev Biol. 1998 Aug;9(4):411-6 [PMID: 9813187]
  24. Regul Pept. 2010 Nov 30;165(1):117-22 [PMID: 20006654]
  25. Gen Comp Endocrinol. 2015 Dec 1;224:176-85 [PMID: 26315387]
  26. Biol Reprod. 2013 Jun 13;88(6):150 [PMID: 23616595]
  27. Gen Comp Endocrinol. 2004 Mar;136(1):37-48 [PMID: 14980795]
  28. J Comp Neurol. 2002 Apr 29;446(2):95-113 [PMID: 11932929]
  29. Endocrinology. 2009 May;150(5):2273-82 [PMID: 19106223]
  30. Cell. 2007 May 18;129(4):723-33 [PMID: 17512406]
  31. Dev Biol. 2006 Jul 1;295(1):250-62 [PMID: 16643885]
  32. BMC Genomics. 2010 Mar 30;11:211 [PMID: 20350334]
  33. Oncogene. 1997 Feb 13;14(6):629-40 [PMID: 9038370]
  34. Endocrinology. 2011 Sep;152(9):3527-40 [PMID: 21750047]
  35. J Mol Endocrinol. 2012 Dec 31;50(1):1-18 [PMID: 23045716]
  36. Gen Comp Endocrinol. 2010 Feb 1;165(3):438-55 [PMID: 19393655]
  37. Microbiol Mol Biol Rev. 1998 Dec;62(4):1191-243 [PMID: 9841670]
  38. Gen Comp Endocrinol. 2005 Jan 15;140(2):116-25 [PMID: 15613274]
  39. Biochem Cell Biol. 2000;78(3):181-91 [PMID: 10949073]
  40. Bioinformatics. 2005 Sep 15;21(18):3674-6 [PMID: 16081474]
  41. Biol Reprod. 2014 Jan 16;90(1):6 [PMID: 24258209]
  42. Gen Comp Endocrinol. 2013 Sep 15;191:155-67 [PMID: 23791759]
  43. PLoS One. 2013 Jul 23;8(7):e70177 [PMID: 23894610]
  44. Comp Biochem Physiol B Biochem Mol Biol. 2009 Aug;153(4):340-7 [PMID: 19398033]
  45. Pediatr Endocrinol Rev. 2006 Jun;3(4):347-58 [PMID: 16816803]
  46. Gen Comp Endocrinol. 2014 Sep 1;205:251-9 [PMID: 24561275]
  47. Gen Comp Endocrinol. 2016 Apr 1;229:100-11 [PMID: 26979276]
  48. Gen Comp Endocrinol. 2015 Sep 15;221:42-53 [PMID: 26172577]
  49. Curr Opin Cell Biol. 2005 Feb;17(1):35-46 [PMID: 15661517]
  50. Biochim Biophys Acta. 2014 Mar;1842(3):482-94 [PMID: 23680515]
  51. BMC Dev Biol. 2008 Sep 17;8:85 [PMID: 18799012]
  52. PLoS Genet. 2007 Aug;3(8):e130 [PMID: 17696610]
  53. Gen Comp Endocrinol. 2015 Nov 1;223:87-107 [PMID: 26428616]
  54. Nucleic Acids Res. 2002 Jun 1;30(11):e51 [PMID: 12034852]
  55. PLoS One. 2013;8(1):e53302 [PMID: 23301058]
  56. Gen Comp Endocrinol. 2015 Jun-Jul;217-218:81-91 [PMID: 25687389]
  57. Annu Rev Pharmacol Toxicol. 2006;46:451-80 [PMID: 16402912]
  58. PLoS One. 2015 Nov 17;10(11):e0142512 [PMID: 26575371]
  59. Dev Dyn. 2008 Dec;237(12 ):3798-808 [PMID: 19035346]
  60. Mol Cell Endocrinol. 2009 Nov 27;312(1-2):61-71 [PMID: 19084576]
  61. Biol Reprod. 2010 Apr;82(4):656-61 [PMID: 19864315]
  62. Gen Comp Endocrinol. 2013 Jun 15;187:104-16 [PMID: 23583767]
  63. Gen Comp Endocrinol. 2009 Jul;162(3):265-75 [PMID: 19345689]
  64. Cell. 2007 Feb 9;128(3):477-90 [PMID: 17289568]
  65. J Comp Neurol. 2013 Mar 1;521(4):933-48 [PMID: 22886357]
  66. Sci Rep. 2016 Sep 28;6:34281 [PMID: 27677591]
  67. Dev Dyn. 2009 Jun;238(6):1389-98 [PMID: 19347951]
  68. Biol Reprod. 2009 Nov;81(5):880-8 [PMID: 19571262]
  69. Endocrinology. 2010 May;151(5):2349-60 [PMID: 20308533]
  70. Gen Comp Endocrinol. 2010 Feb 1;165(3):390-411 [PMID: 19348807]
  71. Biotechniques. 2002 Jun;32(6):1372-4, 1376, 1378-9 [PMID: 12074169]
  72. Biol Reprod. 2011 Oct;85(4):848-57 [PMID: 21715715]
  73. Methods Find Exp Clin Pharmacol. 2002 Jun;24(5):253-9 [PMID: 12168500]
  74. J Biol Chem. 1997 Jul 25;272(30):18538-41 [PMID: 9228017]
  75. Horm Behav. 2016 Jun;82:87-100 [PMID: 27156808]
  76. Endocrinology. 1998 Dec;139(12):4870-80 [PMID: 9832423]
  77. Biol Reprod. 2010 Sep;83(3):443-53 [PMID: 20505169]
  78. Development. 2002 Jun;129(11):2689-97 [PMID: 12015296]
  79. Mol Biol Evol. 2007 Aug;24(8):1596-9 [PMID: 17488738]
  80. Mol Cell Endocrinol. 1995 Feb 27;108(1-2):115-24 [PMID: 7758824]
  81. J Mol Biol. 2009 May 1;388(2):239-51 [PMID: 19285986]
  82. Stain Technol. 1976 Mar;51(2):71-97 [PMID: 59421]
  83. PLoS One. 2013 Oct 23;8(10):e76684 [PMID: 24194844]
  84. Development. 2007 Oct;134(19):3401-11 [PMID: 17715177]
  85. Gen Comp Endocrinol. 2008 Aug;158(1):95-101 [PMID: 18573255]
  86. Gen Comp Endocrinol. 2010 Feb 1;165(3):483-515 [PMID: 19442666]

MeSH Term

Animals
Bass
Cloning, Molecular
Conserved Sequence
Fish Proteins
Gene Expression Profiling
Gene Ontology
Hormones
Male
Oligonucleotide Array Sequence Analysis
Phylogeny
Puberty

Chemicals

Fish Proteins
Hormones

Word Cloud

Created with Highcharts 10.0.0genesonsetmeiosisstagecellpubertycyclefirststudyinvolvedEuropeanseabassreproductionfishchangespathwayexpressionSpermatogenesisdevelopmentmalesspermatogenesisdivisiontranscriptomicspeciesIIincrease11KTproliferationprogressionacidRAearlyeventsRA-signallingresultsBACKGROUND:complexprocesscharacterizedactivationand/orrepressionnumberspatio-temporalmannerPubertalstartsimpliesprimaryspermatogoniasubsequententryaimedcharacterizationconstitutesapproachfocusedRESULTS:testescollectedsuccessfulgroupedrestingproliferativeTransitionmarked11ketotestosteronemainandrogenwhereasresulted315differentiallyexpressedtwostagesinduced1up-regulation2relatedgrowth3down-regulationincludedretinoicsignallinganalysisGO-termsbiologicalpathwaysshowedcellularmetabolicprocessesaffectedconsistentoccurFurthermorethreenuclearreceptorspointimportanceperiodagreementroleCONCLUSION:contributeboostknowledgemolecularendocrinetriggerpubertalincludeplasmalevelsseveralMoreovercanappliedeconomicallyimportantMediterraneancountriesmayhelpdeveloptoolssustainableaquacultureIdentificationconservedtriggeringDicentrarchuslabraxmicroarrayprofilingCellMeiosisRetinoicTeleosts

Similar Articles

Cited By