Isoprenylcysteine carboxylmethyltransferase function is essential for RAB4A-mediated integrin β3 recycling, cell migration and cancer metastasis.

M T Do, T F Chai, P J Casey, M Wang
Author Information
  1. M T Do: Program in Cancer and Stem Cell Biology, Duke-NUS Graduate Medical School, Singapore.
  2. T F Chai: Program in Cancer and Stem Cell Biology, Duke-NUS Graduate Medical School, Singapore.
  3. P J Casey: Program in Cancer and Stem Cell Biology, Duke-NUS Graduate Medical School, Singapore.
  4. M Wang: Program in Cancer and Stem Cell Biology, Duke-NUS Graduate Medical School, Singapore.

Abstract

Isoprenylcysteine carboxylmethyltransferase (ICMT) catalyzes the post-translational modification of RAB GTPases that contain C-terminal CXC motifs. However, the functional impact of this modification on RAB proteins has not been actively explored. We found that inhibition of ICMT significantly reduced cell migration in vitro and cancer invasion and metastasis in vivo. This role of ICMT was found to be mediated by RAB4A, an essential regulator of the fast recycling of integrin β3. Integrin β3 regulates cell polarity and migration when localized appropriately to the plasma membrane, thereby having an essential role in cancer metastasis. ICMT catalyzed carboxylmethylation is critical for RAB4A activation and interaction with effectors, its localization to endosomes and recycling vesicles, and hence important for RAB4A-dependent integrin β3 recycling to plasma membrane. These findings bring attention to the effects of C-terminal carboxylmethylation on RAB GTPases and provide a rationale for targeting ICMT in the treatment of metastatic cancer.

References

  1. Nat Rev Cancer. 2016 Apr;16(4):201-18 [PMID: 27009393]
  2. Nat Cell Biol. 2002 Apr;4(4):E97-100 [PMID: 11944043]
  3. Cell Adh Migr. 2011 Jan-Feb;5(1):11-5 [PMID: 20798596]
  4. Science. 1994 Apr 22;264(5158):569-71 [PMID: 7512751]
  5. Nat Rev Mol Cell Biol. 2016 Feb;17(2):110-22 [PMID: 26790532]
  6. Clin Genitourin Cancer. 2006 Mar;4(4):299-302 [PMID: 16729916]
  7. J Biol Chem. 2009 Oct 9;284(41):27964-73 [PMID: 19651782]
  8. Curr Biol. 2014 Jun 2;24(11):1187-98 [PMID: 24835460]
  9. J Biol Chem. 2000 Jun 9;275(23):17605-10 [PMID: 10747846]
  10. J Cell Biol. 2001 Dec 24;155(7):1319-32 [PMID: 11756480]
  11. Cell. 1992 Sep 4;70(5):715-28 [PMID: 1516130]
  12. J Clin Oncol. 2008 Dec 1;26(34):5610-7 [PMID: 18981465]
  13. Oncogene. 2015 Jun;34(25):3296-304 [PMID: 25151967]
  14. Nat Rev Mol Cell Biol. 2004 Nov;5(11):886-96 [PMID: 15520808]
  15. Cancer Res. 2002 Dec 1;62(23):7083-92 [PMID: 12460930]
  16. Mol Cancer Ther. 2017 May;16(5):914-923 [PMID: 28167504]
  17. J Biol Chem. 2008 Jun 27;283(26):18377-84 [PMID: 18426803]
  18. EMBO J. 2004 Jul 7;23(13):2531-43 [PMID: 15192707]
  19. Proc Natl Acad Sci U S A. 1994 Oct 25;91(22):10712-6 [PMID: 7938016]
  20. J Biol Chem. 1990 Aug 5;265(22):13007-15 [PMID: 2115887]
  21. Oncogene. 2010 Sep 2;29(35):4959-70 [PMID: 20622895]
  22. Nat Med. 2009 Apr;15(4):392-400 [PMID: 19305413]
  23. Nat Cell Biol. 2007 Sep;9(9):1046-56 [PMID: 17721515]
  24. Oncogene. 2010 Jan 21;29(3):380-91 [PMID: 19838215]
  25. Endocrinology. 2000 Jan;141(1):208-18 [PMID: 10614641]
  26. Nat Protoc. 2009;4(4):495-505 [PMID: 19300443]
  27. Nat Methods. 2007 Apr;4(4):359-65 [PMID: 17396127]
  28. Breast Cancer Res. 2006;8(2):R20 [PMID: 16608535]
  29. Nat Rev Mol Cell Biol. 2009 Aug;10 (8):513-25 [PMID: 19603039]
  30. J Cell Biol. 2007 May 7;177(3):515-25 [PMID: 17485491]
  31. Oncogene. 2007 Sep 13;26(42):6238-43 [PMID: 17369840]
  32. Pancreas. 2002 Aug;25(2):e30-5 [PMID: 12142752]
  33. Cell. 1999 Oct 15;99(2):189-98 [PMID: 10535737]
  34. J Clin Invest. 2004 Feb;113(4):539-50 [PMID: 14966563]
  35. Nat Rev Mol Cell Biol. 2010 Nov;11(11):802-14 [PMID: 20966971]
  36. Br J Cancer. 2005 Jan 17;92(1):41-6 [PMID: 15597101]
  37. J Ovarian Res. 2013 Dec 27;6(1):95 [PMID: 24373588]
  38. Cancer Biol Ther. 2014 Sep;15(9):1280-91 [PMID: 24971579]
  39. Arch Biochem Biophys. 1993 Aug 1;304(2):471-8 [PMID: 8346922]
  40. Curr Biol. 2001 Sep 18;11(18):1392-402 [PMID: 11566097]
  41. Nat Rev Cancer. 2005 Aug;5(8):591-602 [PMID: 16056258]
  42. Nat Rev Cancer. 2010 Jan;10(1):9-22 [PMID: 20029421]
  43. J Cell Biol. 2014 Jul 21;206(2):307-28 [PMID: 25049275]
  44. Nat Rev Mol Cell Biol. 2004 Oct;5(10):816-26 [PMID: 15459662]
  45. EMBO J. 1998 Apr 1;17(7):1941-51 [PMID: 9524117]
  46. J Biol Chem. 2008 Jul 4;283(27):18678-84 [PMID: 18434300]
  47. EMBO J. 2003 Jun 2;22(11):2645-57 [PMID: 12773381]
  48. J Biol Chem. 2001 Feb 23;276(8):5841-5 [PMID: 11121396]
  49. J Biol Chem. 2007 Jan 12;282(2):1487-97 [PMID: 17114793]
  50. Curr Biol. 2015 Nov 16;25(22):R1092-105 [PMID: 26583903]
  51. J Cell Sci. 2001 Apr;114(Pt 8):1545-53 [PMID: 11282030]
  52. J Biol Chem. 2011 Oct 7;286(40):35291-8 [PMID: 21852230]

MeSH Term

Animals
Cell Line, Tumor
Cell Movement
Cell Polarity
Chickens
Endosomes
Humans
Integrin beta3
Mice
Neoplasm Invasiveness
Neoplasm Metastasis
Neoplasms
Protein Methyltransferases
Protein Processing, Post-Translational
rab4 GTP-Binding Proteins

Chemicals

Integrin beta3
Protein Methyltransferases
protein-S-isoprenylcysteine O-methyltransferase
rab4 GTP-Binding Proteins

Word Cloud

Created with Highcharts 10.0.0ICMTcancerrecyclingβ3RABcellmigrationmetastasisessentialintegrinIsoprenylcysteinecarboxylmethyltransferasemodificationGTPasesC-terminalfoundroleRAB4Aplasmamembranecarboxylmethylationcatalyzespost-translationalcontainCXCmotifsHoweverfunctionalimpactproteinsactivelyexploredinhibitionsignificantlyreducedvitroinvasionvivomediatedregulatorfastIntegrinregulatespolaritylocalizedappropriatelytherebycatalyzedcriticalactivationinteractioneffectorslocalizationendosomesvesicleshenceimportantRAB4A-dependentfindingsbringattentioneffectsproviderationaletargetingtreatmentmetastaticfunctionRAB4A-mediated

Similar Articles

Cited By