Computationally optimized deimmunization libraries yield highly mutated enzymes with low immunogenicity and enhanced activity.

Regina S Salvat, Deeptak Verma, Andrew S Parker, Jack R Kirsch, Seth A Brooks, Chris Bailey-Kellogg, Karl E Griswold
Author Information
  1. Regina S Salvat: Thayer School of Engineering, Dartmouth College, Hanover, NH 03755.
  2. Deeptak Verma: Department of Computer Science, Dartmouth College, Hanover, NH 03755. ORCID
  3. Andrew S Parker: Department of Computer Science, Dartmouth College, Hanover, NH 03755.
  4. Jack R Kirsch: Thayer School of Engineering, Dartmouth College, Hanover, NH 03755.
  5. Seth A Brooks: Thayer School of Engineering, Dartmouth College, Hanover, NH 03755.
  6. Chris Bailey-Kellogg: Department of Computer Science, Dartmouth College, Hanover, NH 03755; cbk@cs.dartmouth.edu Karl.E.Griswold@Dartmouth.edu. ORCID
  7. Karl E Griswold: Thayer School of Engineering, Dartmouth College, Hanover, NH 03755; cbk@cs.dartmouth.edu Karl.E.Griswold@Dartmouth.edu. ORCID

Abstract

Therapeutic proteins of wide-ranging function hold great promise for treating disease, but immune surveillance of these macromolecules can drive an antidrug immune response that compromises efficacy and even undermines safety. To eliminate widespread T-cell epitopes in any biotherapeutic and thereby mitigate this key source of detrimental immune recognition, we developed a Pareto optimal deimmunization library design algorithm that optimizes protein libraries to account for the simultaneous effects of combinations of mutations on both molecular function and epitope content. Active variants identified by high-throughput screening are thus inherently likely to be deimmunized. Functional screening of an optimized 10-site library (1,536 variants) of P99 β-lactamase (P99βL), a component of ADEPT cancer therapies, revealed that the population possessed high overall fitness, and comprehensive analysis of peptide-MHC II immunoreactivity showed the population possessed lower average immunogenic potential than the wild-type enzyme. Although similar functional screening of an optimized 30-site library (2.15 × 10 variants) revealed reduced population-wide fitness, numerous individual variants were found to have activity and stability better than the wild type despite bearing 13 or more deimmunizing mutations per enzyme. The immunogenic potential of one highly active and stable 14-mutation variant was assessed further using ex vivo cellular immunoassays, and the variant was found to silence T-cell activation in seven of the eight blood donors who responded strongly to wild-type P99βL. In summary, our multiobjective library-design process readily identified large and mutually compatible sets of epitope-deleting mutations and produced highly active but aggressively deimmunized constructs in only one round of library screening.

Keywords

References

  1. J Immunol. 2010 Jul 15;185(2):943-55 [PMID: 20554959]
  2. Proc Natl Acad Sci U S A. 2014 Jun 10;111(23):8577-82 [PMID: 24843166]
  3. ACS Chem Biol. 2014 Sep 19;9(9):1962-8 [PMID: 25052212]
  4. Proteins. 2012 Mar;80(3):790-806 [PMID: 22180081]
  5. MAbs. 2010 May-Jun;2(3):256-65 [PMID: 20400861]
  6. Proc Natl Acad Sci U S A. 2014 Jun 10;111(23):8571-6 [PMID: 24799704]
  7. J Comput Biol. 2013 Feb;20(2):152-65 [PMID: 23384000]
  8. PLoS Comput Biol. 2015 Jan 08;11(1):e1003988 [PMID: 25568954]
  9. Immunogenetics. 2011 Jun;63(6):325-35 [PMID: 21305276]
  10. J Bioinform Comput Biol. 2011 Apr;9(2):207-29 [PMID: 21523929]
  11. Cell Mol Life Sci. 2014 Dec;71(24):4869-80 [PMID: 24880662]
  12. J Comput Biol. 2016 May;23 (5):311-21 [PMID: 26761641]
  13. Biotechnol Bioeng. 2015 Jul;112(7):1306-18 [PMID: 25655032]
  14. Mayo Clin Proc. 2012 Mar;87(3):290-308 [PMID: 22386185]
  15. Chem Biol. 2015 May 21;22(5):629-39 [PMID: 26000749]
  16. J Immunol. 2002 Nov 1;169(9):5098-108 [PMID: 12391226]
  17. Nat Struct Biol. 2003 Jan;10(1):45-52 [PMID: 12459719]
  18. Bioinformatics. 2001 Dec;17(12):1236-7 [PMID: 11751237]
  19. Protein Sci. 2015 May;24(5):895-908 [PMID: 25611189]
  20. Methods Mol Biol. 2017;1529:375-398 [PMID: 27914063]
  21. J Immunother. 2009 Jul-Aug;32(6):574-84 [PMID: 19483652]
  22. Proc Natl Acad Sci U S A. 2009 Jun 9;106(23):9215-20 [PMID: 19470646]
  23. Cell Mol Immunol. 2017 May;14 (5):432-442 [PMID: 26477977]
  24. PLoS Comput Biol. 2012;8(4):e1002477 [PMID: 22532795]
  25. Biotechnol Bioeng. 2014 Feb;111(2):232-43 [PMID: 23955804]
  26. J Comput Chem. 2007 Oct;28(13):2122-9 [PMID: 17471460]
  27. Chem Biol. 2010 Dec 22;17(12):1306-15 [PMID: 21168766]
  28. BMC Bioinformatics. 2010 Apr 09;11:180 [PMID: 20380721]
  29. Anal Biochem. 1995 Jan 1;224(1):347-53 [PMID: 7710092]
  30. Proc Natl Acad Sci U S A. 2015 Jan 20;112(3):749-54 [PMID: 25552560]
  31. J Mol Biol. 2015 Jan 30;427(2):491-510 [PMID: 25451599]
  32. PLoS Comput Biol. 2008 Apr 04;4(4):e1000048 [PMID: 18389056]
  33. Proc Natl Acad Sci U S A. 2011 Jan 25;108(4):1272-7 [PMID: 21209329]
  34. Arthritis Res Ther. 2003;5(1):R40-8 [PMID: 12716452]
  35. J Comput Chem. 2010 Apr 15;31(5):904-16 [PMID: 19637210]
  36. Mol Cancer Ther. 2005 Nov;4(11):1791-800 [PMID: 16276001]
  37. Proc Natl Acad Sci U S A. 2009 Mar 10;106(10):3764-9 [PMID: 19228942]
  38. J Comput Biol. 2011 Nov;18(11):1743-56 [PMID: 21923411]
  39. Clin Biochem. 1997 Aug;30(6):455-63 [PMID: 9316739]
  40. Protein Eng Des Sel. 2012 Oct;25(10):613-23 [PMID: 22898588]
  41. PLoS One. 2011;6(7):e20937 [PMID: 21754981]
  42. J Am Chem Soc. 2006 Feb 1;128(4):1154-61 [PMID: 16433531]
  43. J Immunol. 1998 Apr 1;160(7):3363-73 [PMID: 9531296]
  44. Curr Opin Struct Biol. 2016 Aug;39:16-26 [PMID: 27086078]
  45. J Comput Chem. 2013 Apr 5;34(10):879-91 [PMID: 23299435]
  46. Protein Sci. 2012 Sep;21(9):1241-52 [PMID: 22811394]
  47. J Virol. 2014 Nov;88(21):12669-82 [PMID: 25142607]
  48. Methods Enzymol. 2013;523:171-90 [PMID: 23422430]
  49. J Thromb Haemost. 2005 May;3(5):991-1000 [PMID: 15869596]
  50. Thromb Haemost. 2002 Apr;87(4):666-73 [PMID: 12008950]
  51. J Vis Exp. 2014 Mar 25;(85):null [PMID: 24686319]
  52. Clin Immunol. 2013 Dec;149(3):534-55 [PMID: 24263283]
  53. Expert Rev Anticancer Ther. 2006 Oct;6(10):1421-31 [PMID: 17069527]
  54. Nature. 2009 Apr 16;458(7240):859-64 [PMID: 19370028]
  55. Curr Opin Struct Biol. 2016 Aug;39:79-88 [PMID: 27322891]
  56. J Immunol. 2004 Jun 1;172(11):6658-65 [PMID: 15153481]

Grants

  1. R01 GM098977/NIGMS NIH HHS

MeSH Term

Algorithms
Humans
Mutation
Neoplasm Proteins
Neoplasms
Peptide Library
beta-Lactamases

Chemicals

Neoplasm Proteins
Peptide Library
beta-Lactamases

Word Cloud

Created with Highcharts 10.0.0libraryvariantsscreeningimmuneT-celldeimmunizationmutationsoptimizedhighlyfunctiondesignproteinlibrariesepitopeidentifieddeimmunizedP99βLrevealedpopulationpossessedfitnessimmunogenicpotentialwild-typeenzymefoundactivityoneactivevariantimmunogenicityTherapeuticproteinswide-rangingholdgreatpromisetreatingdiseasesurveillancemacromoleculescandriveantidrugresponsecompromisesefficacyevenunderminessafetyeliminatewidespreadepitopesbiotherapeutictherebymitigatekeysourcedetrimentalrecognitiondevelopedParetooptimalalgorithmoptimizesaccountsimultaneouseffectscombinationsmolecularcontentActivehigh-throughputthusinherentlylikelyFunctional10-site1536P99β-lactamasecomponentADEPTcancertherapieshighoverallcomprehensiveanalysispeptide-MHCIIimmunoreactivityshowedloweraverageAlthoughsimilarfunctional30-site215×10reducedpopulation-widenumerousindividualstabilitybetterwildtypedespitebearing13deimmunizingperstable14-mutationassessedusingexvivocellularimmunoassayssilenceactivationseveneightblooddonorsrespondedstronglysummarymultiobjectivelibrary-designprocessreadilylargemutuallycompatiblesetsepitope-deletingproducedaggressivelyconstructsroundComputationallyyieldmutatedenzymeslowenhancedcombinatorialcomputational

Similar Articles

Cited By