Extremely Low-Frequency Electromagnetic Fields Affect Myogenic Processes in C2C12 Myoblasts: Role of Gap-Junction-Mediated Intercellular Communication.

Caterina Morabito, Nathalie Steimberg, Francesca Rovetta, Jennifer Boniotti, Simone Guarnieri, Giovanna Mazzoleni, Maria A Mariggiò
Author Information
  1. Caterina Morabito: Department of Neuroscience, Imaging and Clinical Sciences, Unit of Functional Biotechnology and StemTeCh Group, Centro Scienze dell' Invecchiamento e Medicina Traslazionale (CeSI-MeT), "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy. ORCID
  2. Nathalie Steimberg: Tissue Engineering Unit, Anatomy and Physiopathology Division, Department of Clinical and Experimental Sciences, School of Medicine, University of Brescia, Brescia, Italy. ORCID
  3. Francesca Rovetta: Tissue Engineering Unit, Anatomy and Physiopathology Division, Department of Clinical and Experimental Sciences, School of Medicine, University of Brescia, Brescia, Italy.
  4. Jennifer Boniotti: Tissue Engineering Unit, Anatomy and Physiopathology Division, Department of Clinical and Experimental Sciences, School of Medicine, University of Brescia, Brescia, Italy.
  5. Simone Guarnieri: Department of Neuroscience, Imaging and Clinical Sciences, Unit of Functional Biotechnology and StemTeCh Group, Centro Scienze dell' Invecchiamento e Medicina Traslazionale (CeSI-MeT), "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy. ORCID
  6. Giovanna Mazzoleni: Tissue Engineering Unit, Anatomy and Physiopathology Division, Department of Clinical and Experimental Sciences, School of Medicine, University of Brescia, Brescia, Italy.
  7. Maria A Mariggiò: Department of Neuroscience, Imaging and Clinical Sciences, Unit of Functional Biotechnology and StemTeCh Group, Centro Scienze dell' Invecchiamento e Medicina Traslazionale (CeSI-MeT), "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy. ORCID

Abstract

Extremely low-frequency electromagnetic fields (ELF-EMFs) can interact with biological systems. Although they are successfully used as therapeutic agents in physiatrics and rehabilitative practice, they might represent environmental pollutants and pose a risk to human health. Due to the lack of evidence of their mechanism of action, the effects of ELF-EMFs on differentiation processes in skeletal muscle were investigated. C2C12 myoblasts were exposed to ELF-EMFs generated by a solenoid. The effects of ELF-EMFs on cell viability and on growth and differentiation rates were studied using colorimetric and vital dye assays, cytomorphology, and molecular analysis of MyoD and myogenin expression, respectively. The establishment of functional gap junctions was investigated analyzing connexin 43 expression levels and measuring cell permeability, using microinjection/dye-transfer assays. The ELF-EMFs did not affect C2C12 myoblast viability or proliferation rate. Conversely, at ELF-EMF intensity in the mT range, the myogenic process was accelerated, through increased expression of MyoD, myogenin, and connexin 43. The increase in gap-junction function suggests promoting cell fusion and myotube differentiation. These data provide the first evidence of the mechanism through which ELF-EMFs may provide therapeutic benefits and can resolve, at least in part, some conditions of muscle dysfunction.

References

  1. Cell Adhes Commun. 1994 Aug;2(4):329-43 [PMID: 7820536]
  2. Bioelectromagnetics. 2005 Jul;26(5):412-30 [PMID: 15887256]
  3. Yonsei Med J. 2006 Dec 31;47(6):852-61 [PMID: 17191316]
  4. Reprod Biol Endocrinol. 2003 Nov 13;1:101 [PMID: 14614776]
  5. J Biophotonics. 2013 Aug;6(8):612-21 [PMID: 22930637]
  6. C R Acad Sci III. 1997 Jan;320(1):35-40 [PMID: 9099262]
  7. BMC Public Health. 2010 Nov 05;10:673 [PMID: 21054823]
  8. Cell Commun Adhes. 2003 Jul-Dec;10(4-6):451-6 [PMID: 14681056]
  9. Cell Prolif. 2014 Dec;47(6):485-93 [PMID: 25319486]
  10. J Appl Physiol (1985). 2001 Aug;91(2):534-51 [PMID: 11457764]
  11. Cell Growth Differ. 1997 May;8(5):533-40 [PMID: 9149904]
  12. Mol Cell Biol. 2004 May;24(9):3607-22 [PMID: 15082758]
  13. Am J Epidemiol. 1988 Jul;128(1):21-38 [PMID: 3164167]
  14. Am J Physiol Cell Physiol. 2009 May;296(5):C1185-94 [PMID: 19295176]
  15. Free Radic Biol Med. 2010 Feb 15;48(4):579-89 [PMID: 20005945]
  16. Nature. 1977 Dec 22-29;270(5639):725-7 [PMID: 563524]
  17. Ann Intern Med. 1993 Mar 1;118(5):376-83 [PMID: 8430983]
  18. Radiat Prot Dosimetry. 2008;132(2):202-11 [PMID: 18927133]
  19. Exp Cell Res. 2010 Sep 10;316(15):2377-89 [PMID: 20595004]
  20. Nat Rev Genet. 2003 Jul;4(7):497-507 [PMID: 12838342]
  21. Biochim Biophys Acta. 2001 Jun 15;1526(3):269-76 [PMID: 11410336]
  22. Br Med Bull. 2003;68:157-65 [PMID: 14757715]
  23. Electromagn Biol Med. 2007;26(3):257-74 [PMID: 17886012]
  24. Cells Tissues Organs. 2006;182(2):59-78 [PMID: 16804297]
  25. J Cell Biol. 1996 Feb;132(4):657-66 [PMID: 8647896]
  26. Cell Commun Adhes. 2006 Jan-Apr;13(1-2):55-60 [PMID: 16613780]
  27. J Back Musculoskelet Rehabil. 2000 Jan 1;15(1):17-29 [PMID: 22388335]
  28. Electromagn Biol Med. 2013 Jun;32(2):121-2 [PMID: 23675614]
  29. Mol Biol Cell. 2006 Nov;17(11):4896-910 [PMID: 16957055]
  30. Stem Cell Res Ther. 2016 Apr 18;7(1):54 [PMID: 27086866]
  31. J Bone Joint Surg Am. 1991 Mar;73(3):320-31 [PMID: 1848246]
  32. J Cell Biochem. 2011 Dec;112(12):3797-806 [PMID: 21826706]
  33. J Cell Physiol. 2016 Sep;231(9):2014-25 [PMID: 26757151]
  34. Cell Physiol Biochem. 2010;26(6):947-58 [PMID: 21220925]
  35. Arch Phys Med Rehabil. 2001 Sep;82(9):1261-9 [PMID: 11552201]
  36. Electromagn Biol Med. 2007;26(1):1-23 [PMID: 17454079]
  37. Front Biosci. 2000 Sep 01;5:D750-67 [PMID: 10966875]
  38. PLoS One. 2014 Sep 17;9(9):e107753 [PMID: 25229238]
  39. Mol Cell Biol. 2002 Jun;22(11):3875-91 [PMID: 11997521]
  40. Curr Opin Cell Biol. 1996 Dec;8(6):877-89 [PMID: 8939680]
  41. Electromagn Biol Med. 2006;25(4):269-80 [PMID: 17178586]
  42. Histochem Cell Biol. 2005 Jun;123(6):573-83 [PMID: 15895240]
  43. Dev Genet. 1997;20(2):133-44 [PMID: 9144924]
  44. ScientificWorldJournal. 2004 Oct 20;4 Suppl 2:4-22 [PMID: 15517098]
  45. Int Rev Cytol. 2000;196:1-65 [PMID: 10730212]
  46. J Cell Sci. 2005 Jan 1;118(Pt 1):27-37 [PMID: 15601660]
  47. Br J Cancer. 2010 Sep 28;103(7):1128-35 [PMID: 20877339]
  48. J Environ Pathol Toxicol Oncol. 1994;13(1):1-10 [PMID: 7823288]

MeSH Term

Animals
Cell Communication
Cell Culture Techniques
Cell Differentiation
Cell Proliferation
Cell Survival
Connexin 43
Electromagnetic Fields
Gene Expression Regulation, Developmental
Mice
Muscle Development
MyoD Protein
Myoblasts
Myogenin

Chemicals

Connexin 43
MyoD Protein
Myogenin

Word Cloud

Created with Highcharts 10.0.0ELF-EMFsdifferentiationC2C12cellexpressionExtremelycantherapeuticevidencemechanismeffectsmuscleinvestigatedviabilityusingassaysMyoDmyogeninconnexin43providelow-frequencyelectromagneticfieldsinteractbiologicalsystemsAlthoughsuccessfullyusedagentsphysiatricsrehabilitativepracticemightrepresentenvironmentalpollutantsposeriskhumanhealthDuelackactionprocessesskeletalmyoblastsexposedgeneratedsolenoidgrowthratesstudiedcolorimetricvitaldyecytomorphologymolecularanalysisrespectivelyestablishmentfunctionalgapjunctionsanalyzinglevelsmeasuringpermeabilitymicroinjection/dye-transferaffectmyoblastproliferationrateConverselyELF-EMFintensitymTrangemyogenicprocessacceleratedincreasedincreasegap-junctionfunctionsuggestspromotingfusionmyotubedatafirstmaybenefitsresolveleastpartconditionsdysfunctionLow-FrequencyElectromagneticFieldsAffectMyogenicProcessesMyoblasts:RoleGap-Junction-MediatedIntercellularCommunication

Similar Articles

Cited By (4)