A Bayesian approach to estimating hidden variables as well as missing and wrong molecular interactions in ordinary differential equation-based mathematical models.

Benjamin Engelhardt, Maik Kschischo, Holger Fr��hlich
Author Information
  1. Benjamin Engelhardt: Rheinische Friedrich-Wilhelms-Universit��t Bonn, Algorithmic Bioinformatics, Bonn, Germany engelhar@bit.uni-bonn.de. ORCID
  2. Maik Kschischo: Department of Mathematics and Technology, University of Applied Sciences Koblenz, RheinAhrCampus, Remagen, Germany.
  3. Holger Fr��hlich: Rheinische Friedrich-Wilhelms-Universit��t Bonn, Algorithmic Bioinformatics, Bonn, Germany.

Abstract

Ordinary differential equations (ODEs) are a popular approach to quantitatively model molecular networks based on biological knowledge. However, such knowledge is typically restricted. Wrongly modelled biological mechanisms as well as relevant external influence factors that are not included into the model are likely to manifest in major discrepancies between model predictions and experimental data. Finding the exact reasons for such observed discrepancies can be quite challenging in practice. In order to address this issue, we suggest a Bayesian approach to estimate hidden influences in ODE-based models. The method can distinguish between exogenous and endogenous hidden influences. Thus, we can detect wrongly specified as well as missed molecular interactions in the model. We demonstrate the performance of our Bayesian dynamic elastic-net with several ordinary differential equation models from the literature, such as human JAK-STAT signalling, information processing at the erythropoietin receptor, isomerization of liquid -Pinene, G protein cycling in yeast and UV-B triggered signalling in plants. Moreover, we investigate a set of commonly known network motifs and a gene-regulatory network. Altogether our method supports the modeller in an algorithmic manner to identify possible sources of errors in ODE-based models on the basis of experimental data.

Keywords

References

  1. Mol Genet Genomics. 2014 Oct;289(5):727-34 [PMID: 24728588]
  2. BMC Syst Biol. 2014 Feb 07;8:13 [PMID: 24507381]
  3. Bioinformatics. 2014 Jan 15;30(2):221-7 [PMID: 24297519]
  4. Ann Stat. 2009;37(4):1733-1751 [PMID: 20445770]
  5. Science. 2005 Apr 22;308(5721):523-9 [PMID: 15845847]
  6. Proc Natl Acad Sci U S A. 2003 Sep 16;100(19):10764-9 [PMID: 12960402]
  7. Bioinformatics. 2012 Jul 1;28(13):1714-20 [PMID: 22563068]
  8. Nat Commun. 2014 Nov 12;5:5415 [PMID: 25388503]
  9. Bioinformatics. 2009 Aug 1;25(15):1923-9 [PMID: 19505944]
  10. Nat Biotechnol. 2008 Sep;26(9):1003-10 [PMID: 18711341]
  11. Science. 1950 Jan 13;111(2872):23-9 [PMID: 15398815]
  12. Proc Natl Acad Sci U S A. 2014 Aug 5;111(31):11539-44 [PMID: 25049395]
  13. Sci Rep. 2016 Feb 11;6:20772 [PMID: 26865316]
  14. Curr Opin Biotechnol. 2013 Aug;24(4):767-74 [PMID: 23578462]
  15. BMC Biol. 2014 Apr 30;12:29 [PMID: 24886484]
  16. Nat Commun. 2015 May 20;6:7186 [PMID: 25990707]
  17. Science. 2010 Jun 11;328(5984):1404-8 [PMID: 20488988]
  18. Bioinformatics. 2008 Mar 15;24(6):833-9 [PMID: 18057018]
  19. Bioinformatics. 2010 Jan 1;26(1):104-10 [PMID: 19880371]
  20. Sci Signal. 2010;3(134):ra20 [PMID: 20731071]
  21. BMC Syst Biol. 2010 Jun 29;4:92 [PMID: 20587024]
  22. Proc Natl Acad Sci U S A. 2014 Dec 30;111(52):18507-12 [PMID: 25512544]
  23. Mol Syst Biol. 2011 Jun 21;7:501 [PMID: 21694718]
  24. Proc Natl Acad Sci U S A. 2013 Feb 12;110(7):2460-5 [PMID: 23359701]
  25. Nat Biotechnol. 2007 Sep;25(9):1001-6 [PMID: 17846631]
  26. Sci Signal. 2015 Apr 07;8(371):fs8 [PMID: 25852187]
  27. Proc Natl Acad Sci U S A. 2003 Feb 4;100(3):1028-33 [PMID: 12552139]
  28. Science. 2002 Oct 25;298(5594):824-7 [PMID: 12399590]
  29. Br J Clin Pharmacol. 2015 Jul;80(1):67-74 [PMID: 25557141]

MeSH Term

Bayes Theorem
Computer Simulation
Gene Expression Regulation
Gene Regulatory Networks
Humans
Models, Chemical
Models, Theoretical
Signal Transduction
Systems Biology

Word Cloud

Created with Highcharts 10.0.0differentialmodelmodelsapproachmolecularwellcanBayesianhiddenordinaryequationsbiologicalknowledgediscrepanciesexperimentaldatainfluencesODE-basedmethodinteractionsdynamicelastic-netsignallingnetworkOrdinaryODEspopularquantitativelynetworksbasedHowevertypicallyrestrictedWronglymodelledmechanismsrelevantexternalinfluencefactorsincludedlikelymanifestmajorpredictionsFindingexactreasonsobservedquitechallengingpracticeorderaddressissuesuggestestimatedistinguishexogenousendogenousThusdetectwronglyspecifiedmisseddemonstrateperformanceseveralequationliteraturehumanJAK-STATinformationprocessingerythropoietinreceptorisomerizationliquid-PineneGproteincyclingyeastUV-BtriggeredplantsMoreoverinvestigatesetcommonlyknownmotifsgene-regulatoryAltogethersupportsmodelleralgorithmicmanneridentifypossiblesourceserrorsbasisestimatingvariablesmissingwrongequation-basedmathematicalmodellingsystemsbiology

Similar Articles

Cited By (9)