Discriminative self-representation sparse regression for neuroimaging-based alzheimer's disease diagnosis.

Xiaofeng Zhu, Heung-Il Suk, Seong-Whan Lee, Dinggang Shen
Author Information
  1. Xiaofeng Zhu: Department of Radiology and BRIC, The University of North Carolina at Chapel Hill, Chapel Hill, USA.
  2. Heung-Il Suk: Department of Brain and Cognitive Engineering, Korea University, Seoul, Republic of Korea.
  3. Seong-Whan Lee: Department of Brain and Cognitive Engineering, Korea University, Seoul, Republic of Korea.
  4. Dinggang Shen: Department of Radiology and BRIC, The University of North Carolina at Chapel Hill, Chapel Hill, USA. dgshen@med.unc.edu.

Abstract

In this paper, we propose a novel feature selection method by jointly considering (1) 'task-specific' relations between response variables (e.g., clinical labels in this work) and neuroimaging features and (2) 'self-representation' relations among neuroimaging features in a sparse regression framework. Specifically, the task-specific relation is devised to learn the relative importance of features for representation of response variables by a linear combination of the input features in a supervised manner, while the self-representation relation is used to take into account the inherent information among neuroimaging features such that any feature can be represented by a weighted sum of the other features, regardless of the label information, in an unsupervised manner. By integrating these two different relations along with a group sparsity constraint, we formulate a new sparse linear regression model for class-discriminative feature selection. The selected features are used to train a support vector machine for classification. To validate the effectiveness of the proposed method, we conducted experiments on the Alzheimer's Disease Neuroimaging Initiative (ADNI) dataset; experimental results showed superiority of the proposed method over the state-of-the-art methods considered in this work.

Keywords

References

  1. IEEE Trans Med Imaging. 2002 Nov;21(11):1421-39 [PMID: 12575879]
  2. Neuroimage. 2009 Oct 1;47(4):1363-70 [PMID: 19371783]
  3. IEEE Trans Pattern Anal Mach Intell. 2013 Nov;35(11):2765-81 [PMID: 24051734]
  4. Neurocase. 2005 Feb;11(1):14-25 [PMID: 15804920]
  5. Med Image Comput Comput Assist Interv. 2014;17(Pt 2):162-9 [PMID: 25485375]
  6. Brain Struct Funct. 2015 Mar;220(2):841-59 [PMID: 24363140]
  7. Neurosci Lett. 2010 Jan 4;468(2):146-50 [PMID: 19879920]
  8. Lancet. 2004 Jan 31;363(9406):392-4 [PMID: 15074306]
  9. Sci Rep. 2016 Apr 11;6:22161 [PMID: 27064442]
  10. Neuroimage. 2010 May 1;50(4):1519-35 [PMID: 20056158]
  11. Proc Natl Acad Sci U S A. 2004 Mar 30;101(13):4637-42 [PMID: 15070770]
  12. Med Image Anal. 2017 May;38:205-214 [PMID: 26674971]
  13. IEEE Trans Med Imaging. 1998 Feb;17(1):87-97 [PMID: 9617910]
  14. Healthc Inform Res. 2014 Jan;20(1):61-8 [PMID: 24627820]
  15. Neuroinformatics. 2015 Jul;13(3):277-95 [PMID: 25501275]
  16. Neuroinformatics. 2014 Apr;12(2):229-44 [PMID: 24013948]
  17. Neurobiol Aging. 2000 Jan-Feb;21(1):19-26 [PMID: 10794844]
  18. Brain Struct Funct. 2016 Nov;221(8):3979-3995 [PMID: 26603378]
  19. IEEE Trans Med Imaging. 2001 Jan;20(1):45-57 [PMID: 11293691]
  20. Neuroimage. 2014 Oct 15;100:91-105 [PMID: 24911377]
  21. Neuroimage. 2012 Jan 16;59(2):895-907 [PMID: 21992749]
  22. Neuroimage. 2011 Apr 1;55(3):856-67 [PMID: 21236349]
  23. Proc IEEE Comput Soc Conf Comput Vis Pattern Recognit. 2014 Jun;2014:3089-3096 [PMID: 26379415]
  24. Neuroimage. 2009 Feb 15;44(4):1415-22 [PMID: 19027862]
  25. Brain Imaging Behav. 2016 Sep;10(3):818-28 [PMID: 26254746]
  26. Med Image Comput Comput Assist Interv. 2014;17(Pt 3):401-8 [PMID: 25320825]
  27. Neuroimage. 2014 May 1;91:386-400 [PMID: 24480301]
  28. Med Image Comput Comput Assist Interv. 2011;14(Pt 3):115-23 [PMID: 22003691]
  29. Comput Vis ECCV. 2014;8690:251-267 [PMID: 25317426]

Grants

  1. R01 EB008374/NIBIB NIH HHS
  2. R01 AG041721/NIA NIH HHS
  3. R01 AG049371/NIA NIH HHS
  4. R21 MH108914/NIMH NIH HHS
  5. R01 AG042599/NIA NIH HHS
  6. RF1 AG053867/NIA NIH HHS
  7. R01 EB006733/NIBIB NIH HHS
  8. R01 EB022880/NIBIB NIH HHS
  9. U01 MH110274/NIMH NIH HHS
  10. R01 MH100217/NIMH NIH HHS

MeSH Term

Aged
Aged, 80 and over
Alzheimer Disease
Female
Humans
Image Interpretation, Computer-Assisted
Machine Learning
Magnetic Resonance Imaging
Male
Middle Aged
Neuroimaging
Pattern Recognition, Automated
Sensitivity and Specificity

Word Cloud

Created with Highcharts 10.0.0featuressparsefeatureselectionmethodrelationsneuroimagingregressionresponsevariablesworkamongrelationlinearmannerself-representationusedinformationproposeddiseasepaperproposenoveljointlyconsidering1'task-specific'egclinicallabels2'self-representation'frameworkSpecificallytask-specificdevisedlearnrelativeimportancerepresentationcombinationinputsupervisedtakeaccountinherentcanrepresentedweightedsumregardlesslabelunsupervisedintegratingtwodifferentalonggroupsparsityconstraintformulatenewmodelclass-discriminativeselectedtrainsupportvectormachineclassificationvalidateeffectivenessconductedexperimentsAlzheimer'sDiseaseNeuroimagingInitiativeADNIdatasetexperimentalresultsshowedsuperioritystate-of-the-artmethodsconsideredDiscriminativeneuroimaging-basedalzheimer'sdiagnosisAlzheimer���sADFeatureJointlearningMildcognitiveimpairmentMCISelf-representation

Similar Articles

Cited By