Lipid-based nanosystem of edaravone: development, optimization, characterization and in vitro/in vivo evaluation.

Ankit Parikh, Krishna Kathawala, Chun Chuan Tan, Sanjay Garg, Xin-Fu Zhou
Author Information
  1. Ankit Parikh: a School of Pharmacy and Medical Sciences, Sansom Institute for Health Research, Division of Health Sciences , University of South Australia , Adelaide , Australia.
  2. Krishna Kathawala: a School of Pharmacy and Medical Sciences, Sansom Institute for Health Research, Division of Health Sciences , University of South Australia , Adelaide , Australia.
  3. Chun Chuan Tan: a School of Pharmacy and Medical Sciences, Sansom Institute for Health Research, Division of Health Sciences , University of South Australia , Adelaide , Australia.
  4. Sanjay Garg: a School of Pharmacy and Medical Sciences, Sansom Institute for Health Research, Division of Health Sciences , University of South Australia , Adelaide , Australia.
  5. Xin-Fu Zhou: a School of Pharmacy and Medical Sciences, Sansom Institute for Health Research, Division of Health Sciences , University of South Australia , Adelaide , Australia.

Abstract

Edaravone (EDR) is a well-recognized lipophilic free radical scavenger for diseases including neurodegenerative disease, cardiovascular disease, and cancer. However, its oral use is restricted due to poor oral bioavailability (BA). The aim of present research was to enable its oral use by developing a Lipid-based nanosystem (LNS). The components of LNS including oil, surfactants, and co-surfactants were selected based on their potential to maximize the solubilization in gastrointestinal (GI) fluids, reduce its glucuronidation and improve transmembrane permeability. The liquid LNS (L-LNS) with Capryol��� PGMC (oil), Cremophor RH 40:Labrasol:TPGS 1000 (1:0.8:0.2) (Surfactant) and Transcutol P (Co-surfactant) were optimized to form microemulsion having droplet size (16.25���nm), polydispersity index (0.039), % Transmittance (99.85%), and self-emulsification time (32���s). It significantly improved the EDR loading as well as its metabolism and permeability profile during transport across the GI tract. To overcome the possible drawbacks of L-LNS, Aerosil 200 was used to formulate solid LNS (S-LNS), and its concentration was optimized based on flow properties. S-LNS possessed all quality attributes of L-LNS confirmed by solid-state characterization, reconstitution ability, and stability study. The dissolution rate of EDR was significantly enhanced with L-LNS and S-LNS in simulated gastric, and intestinal fluids. The pharmacokinetic study revealed significant improvement in relative BA, C, and t with L-LNS and S-LNS against EDR suspension. Moreover, S-LNS showed superior cellular uptake and neuroprotective effect compared to EDR in SH-SY5Y695 cell line. An appropriate selection of the components of LNS could enable effective oral delivery of challenging therapeutics that are conventionally used by the parenteral administration.

Keywords

References

  1. Drug Dev Ind Pharm. 2013 Sep;39(9):1431-8 [PMID: 23046292]
  2. AAPS J. 2016 Jul;18(4):830-43 [PMID: 27184579]
  3. Int J Biomed Sci. 2008 Jun;4(2):89-96 [PMID: 23675073]
  4. Int J Pharm. 2007 Aug 1;340(1-2):84-91 [PMID: 17531411]
  5. AAPS PharmSciTech. 2015 Oct;16(5):1051-8 [PMID: 25652729]
  6. AAPS PharmSciTech. 2008;9(1):13-21 [PMID: 18446456]
  7. Int J Mol Sci. 2012;13(6):7594-7606 [PMID: 22837715]
  8. J Pharmacol Sci. 2015 Mar;127(3):339-43 [PMID: 25837932]
  9. Pharm Res. 2014 Apr;31(4):923-45 [PMID: 24297067]
  10. AAPS PharmSciTech. 2007 Apr 06;8(2):Article 28 [PMID: 17622106]
  11. Int J Pharm. 2012 Nov 15;438(1-2):98-106 [PMID: 22954445]
  12. Int J Nanomedicine. 2015 Jun 05;10:3865-77 [PMID: 26089663]
  13. Drug Dev Ind Pharm. 2005 Sep;31(8):785-94 [PMID: 16221613]
  14. J Pharm Sci. 2014 Feb;103(2):730-42 [PMID: 24311389]
  15. Int J Pharm. 2009 Jun 5;374(1-2):66-72 [PMID: 19446761]
  16. J Cardiovasc Pharmacol. 2003 Jun;41(6):923-9 [PMID: 12775971]
  17. Int J Nanomedicine. 2013;8:2733-44 [PMID: 23926431]
  18. Drugs Aging. 2004;21(2):81-100 [PMID: 14960126]
  19. Drug Deliv. 2017 Nov;24(1):422-429 [PMID: 28165806]
  20. Eur J Pharm Sci. 2001 May;13(2):123-33 [PMID: 11297896]
  21. Mol Pharm. 2016 Oct 3;13(10):3518-3525 [PMID: 27583840]
  22. Drug Deliv Transl Res. 2014 Aug;4(4):344-52 [PMID: 25422796]
  23. Expert Opin Pharmacother. 2010 Jul;11(10):1753-63 [PMID: 20491547]
  24. Future Neurol. 2013 Nov 1;8(6): [PMID: 24376373]
  25. Exp Ther Med. 2012 Jan;3(1):3-8 [PMID: 22969835]
  26. Drug Dev Ind Pharm. 2014 Apr;40(4):477-87 [PMID: 23465049]
  27. Int J Biochem Cell Biol. 2007;39(1):44-84 [PMID: 16978905]
  28. Int J Pharm. 2015 May 15;485(1-2):249-60 [PMID: 25772421]
  29. Drug Dev Ind Pharm. 2015;41(11):1847-55 [PMID: 25721984]
  30. Drug Deliv. 2017 Nov;24(1):632-640 [PMID: 28283000]
  31. Amyotroph Lateral Scler. 2006 Dec;7(4):241-5 [PMID: 17127563]
  32. Drug Metab Dispos. 2012 Apr;40(4):734-41 [PMID: 22238289]
  33. AAPS PharmSciTech. 2010 Mar;11(1):314-21 [PMID: 20182825]
  34. J Microencapsul. 2014;31(3):293-8 [PMID: 24156747]
  35. Clin Interv Aging. 2007;2(2):219-36 [PMID: 18044138]
  36. Int J Pharm. 2016 Dec 30;515(1-2):490-500 [PMID: 27789367]
  37. Drug Deliv Transl Res. 2016 Oct;6(5):610-21 [PMID: 27465619]
  38. Molecules. 2015 Aug 13;20(8):14684-98 [PMID: 26287134]
  39. J Biol Chem. 2014 Apr 25;289(17):12052-12062 [PMID: 24619420]
  40. Proc Natl Acad Sci U S A. 2015 Apr 21;112(16):5225-30 [PMID: 25847999]
  41. Int J Pharm. 2016 Mar 30;501(1-2):311-25 [PMID: 26854426]
  42. Biomed Res Int. 2015;2015:484963 [PMID: 26491671]
  43. Int J Pharm. 2008 May 1;355(1-2):269-76 [PMID: 18242895]
  44. AAPS PharmSciTech. 2008;9(2):628-34 [PMID: 18473177]
  45. Int J Pharm. 2011 Sep 30;417(1-2):120-37 [PMID: 21310225]
  46. Int J Pharm. 2011 Nov 28;420(2):412-8 [PMID: 21944892]
  47. Eur J Pharm Biopharm. 2011 May;78(1):166-72 [PMID: 21220010]
  48. Int J Nanomedicine. 2016 Jun 14;11:2829-38 [PMID: 27366063]
  49. ISRN Pharm. 2013 Dec 26;2013:848043 [PMID: 24459591]
  50. Mol Pharm. 2015 Apr 6;12(4):1084-95 [PMID: 25723098]
  51. Int J Pharm. 2015 May 15;485(1-2):215-28 [PMID: 25772420]
  52. Int J Nanomedicine. 2015 Jul 13;10:4459-78 [PMID: 26203244]
  53. AAPS PharmSciTech. 2009;10(3):906-16 [PMID: 19609837]
  54. Molecules. 2016 Apr 08;21(4):456 [PMID: 27070565]
  55. Biochemistry. 2004 Jan 20;43(2):560-8 [PMID: 14717612]
  56. Int J Mol Med. 2011 Dec;28(6):899-906 [PMID: 21922128]
  57. Int J Pharm Investig. 2014 Oct;4(4):195-206 [PMID: 25426441]
  58. Mol Pharm. 2007 May-Jun;4(3):465-74 [PMID: 17367162]
  59. Int J Pharm. 2016 Jun 15;506(1-2):302-11 [PMID: 27125455]
  60. Nanoscale. 2016 Jan 28;8(4):1746-69 [PMID: 26731460]
  61. Drug Deliv. 2015;22(6):675-90 [PMID: 24670091]
  62. Drug Dev Ind Pharm. 2015;41(9):1493-8 [PMID: 25285358]
  63. Eur J Pharm Sci. 2006 Jun;28(3):233-42 [PMID: 16650738]
  64. Int J Pharm. 2003 Jan 2;250(1):181-90 [PMID: 12480284]

MeSH Term

Administration, Oral
Antipyrine
Biological Availability
Drug Delivery Systems
Edaravone
Emulsions
Humans
Lipids
Nanostructures
Solubility

Chemicals

Emulsions
Lipids
Edaravone
Antipyrine

Word Cloud

Created with Highcharts 10.0.0EDRoralLNSL-LNSS-LNSnanosystempermeabilityEdaravoneincludingdiseaseusebioavailabilityBAenablelipid-basedcomponentsbasedGIfluidsglucuronidationoptimizedsignificantlyusedcharacterizationstudywell-recognizedlipophilicfreeradicalscavengerdiseasesneurodegenerativecardiovascularcancerHoweverrestrictedduepooraimpresentresearchdevelopingoilsurfactantsco-surfactantsselectedpotentialmaximizesolubilizationgastrointestinalreduceimprovetransmembraneliquidCapryol���PGMCOilCremophorRH40:Labrasol:TPGS10001:08:02SurfactantTranscutolPCo-surfactantformmicroemulsiondropletsize1625���nmpolydispersityindex0039%Transmittance9985%self-emulsificationtime32���simprovedloadingwellmetabolismprofiletransportacrosstractovercomepossibledrawbacksAerosil200formulatesolidconcentrationflowpropertiespossessedqualityattributesconfirmedsolid-statereconstitutionabilitystabilitydissolutionrateenhancedsimulatedgastricintestinalpharmacokineticrevealedsignificantimprovementrelativeCtsuspensionMoreovershowedsuperiorcellularuptakeneuroprotectiveeffectcomparedSH-SY5Y695celllineappropriateselectioneffectivedeliverychallengingtherapeuticsconventionallyparenteraladministrationLipid-basededaravone:developmentoptimizationvitro/invivoevaluation

Similar Articles

Cited By (18)