Little evidence for intralocus sexual conflict over the optimal intake of nutrients for life span and reproduction in the black field cricket Teleogryllus commodus.

James Rapkin, C Ruth Archer, Charles E Grant, Kim Jensen, Clarissa M House, Alastair J Wilson, John Hunt
Author Information
  1. James Rapkin: Centre for Ecology and Conservation, College of Life and Environmental Sciences, University of Exeter, Penryn Campus, Penryn, Cornwall, TR10 9FE, United Kingdom.
  2. C Ruth Archer: Centre for Ecology and Conservation, College of Life and Environmental Sciences, University of Exeter, Penryn Campus, Penryn, Cornwall, TR10 9FE, United Kingdom.
  3. Charles E Grant: Centre for Ecology and Conservation, College of Life and Environmental Sciences, University of Exeter, Penryn Campus, Penryn, Cornwall, TR10 9FE, United Kingdom.
  4. Kim Jensen: Centre for Ecology and Conservation, College of Life and Environmental Sciences, University of Exeter, Penryn Campus, Penryn, Cornwall, TR10 9FE, United Kingdom.
  5. Clarissa M House: Centre for Ecology and Conservation, College of Life and Environmental Sciences, University of Exeter, Penryn Campus, Penryn, Cornwall, TR10 9FE, United Kingdom.
  6. Alastair J Wilson: Centre for Ecology and Conservation, College of Life and Environmental Sciences, University of Exeter, Penryn Campus, Penryn, Cornwall, TR10 9FE, United Kingdom.
  7. John Hunt: Centre for Ecology and Conservation, College of Life and Environmental Sciences, University of Exeter, Penryn Campus, Penryn, Cornwall, TR10 9FE, United Kingdom.

Abstract

There is often large divergence in the effects of key nutrients on life span (LS) and reproduction in the sexes, yet nutrient intake is regulated in the same way in males and females given dietary choice. This suggests that the sexes are constrained from feeding to their sex-specific nutritional optima for these traits. Here, we examine the potential for intralocus sexual conflict (IASC) over optimal protein and carbohydrate intake for LS and reproduction to constrain the evolution of sex-specific nutrient regulation in the field cricket, Teleogryllus commodus. We show clear sex differences in the effects of protein and carbohydrate intake on LS and reproduction and strong positive genetic correlations between the sexes for the regulated intake of these nutrients. However, the between-sex additive genetic covariance matrix had very little effect on the predicted evolutionary response of nutrient regulation in the sexes. Thus, IASC appears unlikely to act as an evolutionary constraint on sex-specific nutrient regulation in T. commodus. This finding is supported by clear sexual dimorphism in the regulated intake of these nutrients under dietary choice. However, nutrient regulation did not coincide with the nutritional optima for LS or reproduction in either sex, suggesting that IASC is not completely resolved in T. commodus.

Keywords

Associated Data

Dryad | 10.5061/dryad.7jv49

References

  1. Evolution. 1980 Mar;34(2):292-305 [PMID: 28563426]
  2. J Anim Ecol. 2010 Jan;79(1):13-26 [PMID: 20409158]
  3. Aging Cell. 2012 Jun;11(3):401-9 [PMID: 22268691]
  4. Oecologia. 1990 Jan;82(1):1-11 [PMID: 28313130]
  5. J Evol Biol. 2016 Feb;29(2):395-406 [PMID: 26563682]
  6. Mech Ageing Dev. 2006 Sep;127(9):705-18 [PMID: 16764907]
  7. Evolution. 2006 Oct;60(10):2168-81 [PMID: 17133873]
  8. Evolution. 2011 Jun;65(6):1594-606 [PMID: 21644951]
  9. Am Nat. 2013 Jul;182(1):91-102 [PMID: 23778229]
  10. Am Nat. 2009 Jun;173(6):792-802 [PMID: 19374505]
  11. Annu Rev Biochem. 2008;77:727-54 [PMID: 18373439]
  12. Curr Biol. 2012 Sep 25;22(18):1717-21 [PMID: 22863313]
  13. Proc Biol Sci. 2012 Jun 7;279(1736):2212-8 [PMID: 22237910]
  14. Ecology. 2009 Jun;90(6):1698-707 [PMID: 19569384]
  15. Obesity (Silver Spring). 2008 Dec;16 Suppl 3:S23-7 [PMID: 19037208]
  16. Gend Med. 2006 Jun;3(2):79-92 [PMID: 16860268]
  17. Cell Metab. 2014 Mar 4;19(3):418-30 [PMID: 24606899]
  18. Trends Ecol Evol. 2009 May;24(5):280-8 [PMID: 19307043]
  19. Nature. 1996 Sep 19;383(6597):224 [PMID: 8805695]
  20. Bioessays. 2013 Aug;35(8):717-24 [PMID: 23733656]
  21. J Gerontol A Biol Sci Med Sci. 2006 Jan;61(1):14-9 [PMID: 16456190]
  22. Am Nat. 2006 Apr;167(4):E102-16 [PMID: 16670989]
  23. Aging Cell. 2003 Jun;2(3):165-73 [PMID: 12882409]
  24. PLoS One. 2007 Aug 15;2(8):e744 [PMID: 17710144]
  25. Evolution. 2012 Oct;66(10):3088-100 [PMID: 23025600]
  26. J Biol. 2009;8(4):38 [PMID: 19439039]
  27. Am Nat. 2007 Jan;169(1):29-37 [PMID: 17206582]
  28. Proc Biol Sci. 2007 Dec 22;274(1629):3097-104 [PMID: 17939988]
  29. Trends Ecol Evol. 2004 May;19(5):238-44 [PMID: 16701262]
  30. Evolution. 2011 Jul;65(7):2085-97 [PMID: 21729062]
  31. Curr Biol. 2008 Jul 22;18(14):1062-6 [PMID: 18635354]
  32. Aging Cell. 2009 Sep;8(5):514-23 [PMID: 19558564]
  33. Genes Nutr. 2013 Mar;8(2):241-52 [PMID: 23055091]
  34. Nature. 2004 Dec 23;432(7020):1024-7 [PMID: 15616562]
  35. Br J Nutr. 2015 Jan;113 Suppl:S26-39 [PMID: 25415804]
  36. J Insect Physiol. 2016 Aug-Sep;91-92:93-9 [PMID: 27405009]
  37. Behav Genet. 2003 Mar;33(2):191-201 [PMID: 14574152]
  38. Proc Biol Sci. 2015 Mar 7;282(1802):null [PMID: 25608881]
  39. Cell Metab. 2016 Jun 14;23 (6):1022-1033 [PMID: 27304504]
  40. PLoS One. 2011 Jan 24;6(1):e16557 [PMID: 21283632]
  41. Science. 2009 Jul 10;325(5937):201-4 [PMID: 19590001]
  42. Annu Rev Entomol. 1996;41:407-31 [PMID: 15012335]
  43. Obes Rev. 2014 Mar;15(3):183-91 [PMID: 24588967]
  44. Proc Natl Acad Sci U S A. 2008 Feb 19;105(7):2498-503 [PMID: 18268352]
  45. Heredity (Edinb). 1948 Dec;2(Pt. 3):349-68 [PMID: 18103134]
  46. Aging Cell. 2015 Aug;14(4):605-15 [PMID: 25808180]
  47. Ecol Evol. 2016 Jun 12;6(14):4711-30 [PMID: 27547307]
  48. Proc Biol Sci. 2014 Oct 7;281(1792):null [PMID: 25143029]
  49. Obes Rev. 2005 May;6(2):133-42 [PMID: 15836464]
  50. J Insect Physiol. 2012 Mar;58(3):327-34 [PMID: 22094291]
  51. Exp Gerontol. 2002 Aug-Sep;37(8-9):1023-30 [PMID: 12213553]
  52. Exp Gerontol. 1997 Jan-Apr;32(1-2):23-38 [PMID: 9088899]
  53. Proc Biol Sci. 2009 Mar 22;276(1659):1183-91 [PMID: 19129097]

Grants

  1. /Biotechnology and Biological Sciences Research Council

MeSH Term

Animals
Female
Gryllidae
Male
Phenotype
Reproduction
Selection, Genetic
Sex Characteristics
Sexual Behavior

Word Cloud

Created with Highcharts 10.0.0reproductionintakenutrientnutrientsLSsexessexualregulationcommoduslifespanregulatedsex-specificintralocusconflictIASCproteineffectsdietarychoicenutritionaloptimaoptimalcarbohydratefieldcricketTeleogryllusclearsexgeneticHoweverevolutionaryToftenlargedivergencekeyyetwaymalesfemalesgivensuggestsconstrainedfeedingtraitsexaminepotentialconstrainevolutionshowdifferencesstrongpositivecorrelationsbetween-sexadditivecovariancematrixlittleeffectpredictedresponseThusappearsunlikelyactconstraintfindingsupporteddimorphismcoincideeithersuggestingcompletelyresolvedLittleevidenceblackCarbohydrateGeometricFrameworknutrition

Similar Articles

Cited By