Counterbalancing Regulation in Response Memory of a Positively Autoregulated Two-Component System.

Rong Gao, Katherine A Godfrey, Mahir A Sufian, Ann M Stock
Author Information
  1. Rong Gao: Center for Advanced Biotechnology and Medicine, Department of Biochemistry and Molecular Biology, Rutgers University-Robert Wood Johnson Medical School, Piscataway, New Jersey, USA.
  2. Katherine A Godfrey: Center for Advanced Biotechnology and Medicine, Department of Biochemistry and Molecular Biology, Rutgers University-Robert Wood Johnson Medical School, Piscataway, New Jersey, USA.
  3. Mahir A Sufian: Center for Advanced Biotechnology and Medicine, Department of Biochemistry and Molecular Biology, Rutgers University-Robert Wood Johnson Medical School, Piscataway, New Jersey, USA.
  4. Ann M Stock: Center for Advanced Biotechnology and Medicine, Department of Biochemistry and Molecular Biology, Rutgers University-Robert Wood Johnson Medical School, Piscataway, New Jersey, USA stock@cabm.rutgers.edu. ORCID

Abstract

Fluctuations in nutrient availability often result in recurrent exposures to the same stimulus conditions. The ability to memorize the past event and use the "memory" to make adjustments to current behaviors can lead to a more efficient adaptation to the recurring stimulus. A short-term phenotypic memory can be conferred via carryover of the response proteins to facilitate the recurrent response, but the additional accumulation of response proteins can lead to a deviation from response homeostasis. We used the PhoB/PhoR two-component system (TCS) as a model system to study how cells cope with the recurrence of environmental phosphate (Pi) starvation conditions. We discovered that "memory" of prior Pi starvation can exert distinct effects through two regulatory pathways, the TCS signaling pathway and the stress response pathway. Although carryover of TCS proteins can lead to higher initial levels of transcription factor PhoB and a faster initial response in prestarved cells than in cells not starved, the response enhancement can be overcome by an earlier and greater repression of promoter activity in prestarved cells due to the memory of the stress response. The repression counterbalances the carryover of the response proteins, leading to a homeostatic response whether or not cells are prestimulated. A computational model based on sigma factor competition was developed to understand the memory of stress response and to predict the homeostasis of other PhoB-regulated response proteins. Our insight into the history-dependent PhoBR response may provide a general understanding of how TCSs respond to recurring stimuli and adapt to fluctuating environmental conditions. Bacterial cells in their natural environments experience scenarios that are far more complex than are typically replicated in laboratory experiments. The architectures of signaling systems and the integration of multiple adaptive pathways have evolved to deal with such complexity. In this study, we examined the molecular "memory" that is generated by previous exposure to stimulus. Under our experimental conditions, activating effects of autoregulated two-component signaling and inhibitory effects of the stress response counterbalanced the transcriptional output to approach response homeostasis whether or not cells had been preexposed to stimulus. Modeling allows prediction of response behavior in different scenarios and demonstrates both the robustness of the system output and its sensitivity to historical parameters such as timing and levels of exposure to stimuli.

Keywords

References

  1. Annu Rev Microbiol. 2008;62:35-51 [PMID: 18454629]
  2. Mol Microbiol. 2008 Sep;69(6):1358-72 [PMID: 18631241]
  3. Curr Opin Microbiol. 2010 Apr;13(2):198-203 [PMID: 20171928]
  4. MBio. 2016 Feb 23;7(1):e00047-16 [PMID: 26908573]
  5. J Bacteriol. 2002 Oct;184(19):5358-63 [PMID: 12218022]
  6. Proc Natl Acad Sci U S A. 2003 Jan 21;100(2):691-6 [PMID: 12522261]
  7. Nature. 2003 Nov 27;426(6965):460-5 [PMID: 14647386]
  8. MBio. 2017 May 16;8(3):null [PMID: 28512092]
  9. J Bacteriol. 1993 Dec;175(24):7982-9 [PMID: 8253685]
  10. PLoS Comput Biol. 2014 Oct 09;10(10):e1003845 [PMID: 25299042]
  11. Annu Rev Microbiol. 2009;63:133-54 [PMID: 19575571]
  12. PLoS One. 2008 Feb 27;3(2):e1700 [PMID: 18324309]
  13. PLoS Genet. 2014 Sep 25;10(9):e1004556 [PMID: 25255314]
  14. J Bacteriol. 2001 Aug;183(16):4914-7 [PMID: 11466297]
  15. PLoS Genet. 2013;9(8):e1003706 [PMID: 23990799]
  16. Nat Rev Genet. 2007 Jun;8(6):450-61 [PMID: 17510665]
  17. BMC Microbiol. 2011 Nov 08;11:248 [PMID: 22067413]
  18. J Bacteriol. 1999 Sep;181(17):5263-72 [PMID: 10464196]
  19. Nat Commun. 2014 Jun 20;5:4115 [PMID: 24947454]
  20. Mol Gen Genet. 1998 Feb;257(4):469-77 [PMID: 9529528]
  21. Mol Microbiol. 2004 Nov;54(4):855-62 [PMID: 15522072]
  22. Nat Methods. 2012 Jul;9(7):671-5 [PMID: 22930834]
  23. Curr Biol. 2007 Dec 4;17(23):2041-6 [PMID: 17997309]
  24. Biol Chem. 2012 Sep 08;393(10):1165-71 [PMID: 23096352]
  25. Sci Rep. 2016 Apr 06;6:24055 [PMID: 27048851]
  26. Cell. 1982 Nov;31(1):215-26 [PMID: 6760985]
  27. Science. 2012 May 18;336(6083):911-5 [PMID: 22605776]
  28. J Bacteriol. 2003 Oct;185(20):5984-92 [PMID: 14526009]
  29. Proc Natl Acad Sci U S A. 2010 Sep 28;107(39):16964-9 [PMID: 20833818]
  30. Proc Natl Acad Sci U S A. 2010 Jan 5;107(1):175-80 [PMID: 20018658]
  31. Microbiol Mol Biol Rev. 2002 Sep;66(3):373-95, table of contents [PMID: 12208995]
  32. Philos Trans R Soc Lond B Biol Sci. 1995 Nov 29;350(1332):133-41 [PMID: 8577857]
  33. Annu Rev Microbiol. 2014;68:357-76 [PMID: 25002089]
  34. Annu Rev Microbiol. 2011;65:189-213 [PMID: 21639793]
  35. Annu Rev Microbiol. 2012;66:325-47 [PMID: 22746333]
  36. Proc Natl Acad Sci U S A. 2016 Apr 12;113(15):4224-9 [PMID: 26960998]
  37. Cell. 2010 Jan 8;140(1):13-8 [PMID: 20085698]
  38. PLoS Genet. 2013 Oct;9(10):e1003927 [PMID: 24204322]
  39. Int J Food Microbiol. 2000 Apr 10;55(1-3):3-9 [PMID: 10791710]
  40. J Bacteriol. 2002 Feb;184(3):806-11 [PMID: 11790751]
  41. Nat Rev Microbiol. 2015 May;13(5):298-309 [PMID: 25853779]
  42. Proc Natl Acad Sci U S A. 2013 Jan 8;110(2):672-7 [PMID: 23267085]
  43. Biochemistry. 2013 Nov 19;52(46):8177-86 [PMID: 24199636]
  44. Nature. 2005 Jul 28;436(7050):588-92 [PMID: 16049495]
  45. Nature. 2000 Jun 1;405(6786):590-3 [PMID: 10850721]
  46. MBio. 2015 May 26;6(3):e00686-15 [PMID: 26015501]
  47. Nature. 2009 Jul 9;460(7252):220-4 [PMID: 19536156]
  48. Proc Natl Acad Sci U S A. 2000 Jun 6;97(12):6640-5 [PMID: 10829079]
  49. J Bacteriol. 1974 Sep;119(3):736-47 [PMID: 4604283]
  50. Proc Natl Acad Sci U S A. 2007 Jul 31;104(31):12896-901 [PMID: 17640895]
  51. Annu Rev Microbiol. 2011;65:37-55 [PMID: 21639785]
  52. Microbiology. 2004 Sep;150(Pt 9):2985-92 [PMID: 15347756]
  53. Proc Natl Acad Sci U S A. 2006 Sep 5;103(36):13503-8 [PMID: 16938894]

Grants

  1. R01 GM047958/NIGMS NIH HHS

MeSH Term

Bacterial Proteins
Escherichia coli
Escherichia coli Proteins
Gene Expression Regulation, Bacterial
Models, Theoretical
Phosphates
Signal Transduction
Stress, Physiological
Transcription Factors

Chemicals

Bacterial Proteins
Escherichia coli Proteins
PhoB protein, E coli
Phosphates
Transcription Factors
PhoR protein, Bacteria

Word Cloud

Created with Highcharts 10.0.0responsecellscanproteinsstressstimulusconditionsmemoryhomeostasis"memory"leadcarryovertwo-componentsystemTCSeffectssignalingrepressiontranscriptionalrecurrentrecurringmodelstudyenvironmentalPistarvationregulatorypathwayspathwayinitiallevelsfactorprestarvedwhethersigmaPhoBRstimuliscenariossystemsexposureoutputFluctuationsnutrientavailabilityoftenresultexposuresabilitymemorizepasteventusemakeadjustmentscurrentbehaviorsefficientadaptationshort-termphenotypicconferredviafacilitateadditionalaccumulationdeviationusedPhoB/PhoRcoperecurrencephosphatediscoveredpriorexertdistincttwoAlthoughhighertranscriptionPhoBfasterstarvedenhancementovercomeearliergreaterpromoteractivityduecounterbalancesleadinghomeostaticprestimulatedcomputationalbasedcompetitiondevelopedunderstandpredictPhoB-regulatedinsighthistory-dependentmayprovidegeneralunderstandingTCSsrespondadaptfluctuatingBacterialnaturalenvironmentsexperiencefarcomplextypicallyreplicatedlaboratoryexperimentsarchitecturesintegrationmultipleadaptiveevolveddealcomplexityexaminedmoleculargeneratedpreviousexperimentalactivatingautoregulatedinhibitorycounterbalancedapproachpreexposedModelingallowspredictionbehaviordifferentdemonstratesrobustnesssensitivityhistoricalparameterstimingCounterbalancingRegulationResponseMemoryPositivelyAutoregulatedTwo-ComponentSystemautoregulationcomputermodelingfactorsregulation

Similar Articles

Cited By (6)