Lifespan Disparity as an Additional Indicator for Evaluating Mortality Forecasts.

Christina Bohk-Ewald, Marcus Ebeling, Roland Rau
Author Information
  1. Christina Bohk-Ewald: Max Planck Institute for Demographic Research, Konrad Zuse Strasse 1, 18057, Rostock, Germany. bohkewald@demogr.mpg.de.
  2. Marcus Ebeling: Max Planck Institute for Demographic Research, Konrad Zuse Strasse 1, 18057, Rostock, Germany.
  3. Roland Rau: Max Planck Institute for Demographic Research, Konrad Zuse Strasse 1, 18057, Rostock, Germany.

Abstract

Evaluating the predictive ability of mortality forecasts is important yet difficult. Death rates and mean lifespan are basic life table functions typically used to analyze to what extent the forecasts deviate from their realized values. Although these parameters are useful for specifying precisely how mortality has been forecasted, they cannot be used to assess whether the underlying mortality developments are plausible. We therefore propose that in addition to looking at average lifespan, we should examine whether the forecasted variability of the age at death is a plausible continuation of past trends. The validation of mortality forecasts for Italy, Japan, and Denmark demonstrates that their predictive performance can be evaluated more comprehensively by analyzing both the average lifespan and lifespan disparity-that is, by jointly analyzing the mean and the dispersion of mortality. Approaches that account for dynamic age shifts in survival improvements appear to perform better than others that enforce relatively invariant patterns. However, because forecasting approaches are designed to capture trends in average mortality, we argue that studying lifespan disparity may also help to improve the methodology and thus the predictive ability of mortality forecasts.

Keywords

References

  1. Genus. 2017;73(1):1 [PMID: 28133393]
  2. Demography. 2005 Aug;42(3):575-94 [PMID: 16235614]
  3. Demogr Res. 2011 Jul 1;25:1-38 [PMID: 24696636]
  4. Popul Dev Rev. 2010;36(3):511-39 [PMID: 20882704]
  5. Demography. 2001 Nov;38(4):537-49 [PMID: 11723950]
  6. Demogr Res. 2000 Sep 12;3:[24] p. [PMID: 12178156]
  7. Demogr Res. 2014 May 1;30:1367-1396 [PMID: 25685053]
  8. BMJ Open. 2011 Jul 29;1(1):e000128 [PMID: 22021770]
  9. N Engl J Med. 1980 Jul 17;303(3):130-5 [PMID: 7383070]
  10. Demography. 2005 May;42(2):243-58 [PMID: 15986985]
  11. Popul Stud (Camb). 2015 ;69(3):317-35 [PMID: 26452306]
  12. Demography. 2013 Feb;50(1):261-83 [PMID: 23055234]
  13. Soc Sci Med. 2009 Mar;68(6):1114-23 [PMID: 19176269]
  14. Demography. 2005 Feb;42(1):23-49 [PMID: 15782894]
  15. Popul Stud (Camb). 2012 Mar;66(1):29-37 [PMID: 22214515]
  16. Demography. 2003 May;40(2):201-16 [PMID: 12846129]
  17. Demography. 2013 Aug;50(4):1341-62 [PMID: 23325722]
  18. Gerontologist. 1996 Dec;36(6):773-82 [PMID: 8990589]
  19. Demography. 2013 Dec;50(6):2037-51 [PMID: 23904392]
  20. J Gerontol. 1991 Mar;46(2):S66-70 [PMID: 1997584]
  21. Popul Stud (Camb). 2007 Mar;61(1):85-97 [PMID: 17365875]
  22. Demography. 2013 Jun;50(3):777-801 [PMID: 23494599]
  23. Demography. 1999 Nov;36(4):475-95 [PMID: 10604076]
  24. Exp Gerontol. 1995 Jan-Feb;30(1):33-64 [PMID: 7758536]

MeSH Term

Age Distribution
Denmark
Developed Countries
Humans
Japan
Life Expectancy
Life Tables
Models, Statistical
Mortality

Word Cloud

Created with Highcharts 10.0.0mortalitylifespanforecastspredictiveaverageEvaluatingabilitymeanusedforecastedwhetherplausibleagetrendsperformanceanalyzingdisparityLifespanimportantyetdifficultDeathratesbasiclifetablefunctionstypicallyanalyzeextentdeviaterealizedvaluesAlthoughparametersusefulspecifyingpreciselyassessunderlyingdevelopmentsthereforeproposeadditionlookingexaminevariabilitydeathcontinuationpastvalidationItalyJapanDenmarkdemonstratescanevaluatedcomprehensivelydisparity-thatjointlydispersionApproachesaccountdynamicshiftssurvivalimprovementsappearperformbetterothersenforcerelativelyinvariantpatternsHoweverforecastingapproachesdesignedcapturearguestudyingmayalsohelpimprovemethodologythusDisparityAdditionalIndicatorMortalityForecastsAverageEvaluationForecasting

Similar Articles

Cited By