Developmental Connectomics from Infancy through Early Childhood.

Miao Cao, Hao Huang, Yong He
Author Information
  1. Miao Cao: National Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing 100875, China; Beijing Key Laboratory of Brain Imaging and Connectomics, Beijing Normal University, Beijing 100875, China; IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing 100875, China.
  2. Hao Huang: Department of Radiology, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA; Department of Radiology, University of Pennsylvania, Philadelphia, PA 19104, USA.
  3. Yong He: National Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing 100875, China; Beijing Key Laboratory of Brain Imaging and Connectomics, Beijing Normal University, Beijing 100875, China; IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing 100875, China. Electronic address: yong.he@bnu.edu.cn.

Abstract

The human brain undergoes rapid growth in both structure and function from infancy through early childhood, and this significantly influences cognitive and behavioral development in later life. A newly emerging research framework, developmental connectomics, provides unprecedented opportunities for exploring the developing brain through non-invasive mapping of structural and functional connectivity patterns. Within this framework, we review recent neuroimaging and neurophysiological studies investigating connectome development from 20 postmenstrual weeks to 5 years of age. Specifically, we highlight five fundamental principles of brain network development during the critical first years of life, emphasizing strengthened segregation/integration balance, a remarkable hierarchical order from primary to higher-order regions, unparalleled structural and functional maturations, substantial individual variability, and high vulnerability to risk factors and developmental disorders.

Keywords

References

  1. Science. 2013 Nov 1;342(6158):1238411 [PMID: 24179229]
  2. Annu Rev Psychol. 2015 Jan 3;66:853-76 [PMID: 25559117]
  3. Neuron. 2014 Sep 17;83(6):1335-53 [PMID: 25233316]
  4. Nature. 2016 Aug 11;536(7615):171-178 [PMID: 27437579]
  5. Front Hum Neurosci. 2013 Aug 06;7:444 [PMID: 23964223]
  6. Neuroimage. 2011 May 1;56(1):8-20 [PMID: 21276861]
  7. Brain Struct Funct. 2015 Mar;220(2):1173-86 [PMID: 24469153]
  8. Dev Cogn Neurosci. 2015 Apr;12:40-50 [PMID: 25459875]
  9. Neuroimage. 2011 Jan 1;54(1):313-27 [PMID: 20656036]
  10. Cereb Cortex. 2015 Aug;25(8):2204-12 [PMID: 24591525]
  11. Neuroscientist. 2015 Jun;21(3):290-305 [PMID: 24962094]
  12. Nature. 1998 Jun 4;393(6684):440-2 [PMID: 9623998]
  13. J Neurosci. 2014 Mar 19;34(12):4228-38 [PMID: 24647943]
  14. J Neurosci. 2015 Apr 8;35(14):5860-9 [PMID: 25855194]
  15. PLoS One. 2016 Apr 13;11(4):e0152991 [PMID: 27073881]
  16. J Comp Neurol. 1997 Oct 20;387(2):167-78 [PMID: 9336221]
  17. Hum Brain Mapp. 2016 Feb;37(2):819-32 [PMID: 26663516]
  18. Cereb Cortex. 2015 Nov;25(11):4310-8 [PMID: 25596587]
  19. Front Hum Neurosci. 2013 Oct 29;7:721 [PMID: 24194711]
  20. Neuroimage. 2015 Mar;108:144-50 [PMID: 25528658]
  21. Neuroimage. 2017 Oct 15;160:152-167 [PMID: 28232122]
  22. Brain Struct Funct. 2016 Jul;221(6):3211-22 [PMID: 26341628]
  23. Neuroimage. 2011 Feb 1;54(3):1862-71 [PMID: 20650319]
  24. Proc Natl Acad Sci U S A. 2013 Jun 4;110(23):9541-6 [PMID: 23696665]
  25. Neuroimage. 2015 Oct 15;120:467-80 [PMID: 26070259]
  26. Proc Natl Acad Sci U S A. 2014 May 20;111(20):7456-61 [PMID: 24799693]
  27. Prev Med. 1998 Mar-Apr;27(2):184-8 [PMID: 9578992]
  28. Cereb Cortex. 2015 Sep;25(9):3000-13 [PMID: 24833018]
  29. Neuroimage. 2014 Nov 1;101:667-80 [PMID: 25076107]
  30. Hum Brain Mapp. 2014 Aug;35(8):3726-37 [PMID: 24375724]
  31. Neuroscientist. 2017 Apr;23(2):169-184 [PMID: 26929236]
  32. Cereb Cortex. 2016 Jan;26(1):322-333 [PMID: 25331596]
  33. Psychiatry Res. 2013 Jul 30;213(1):47-55 [PMID: 23693086]
  34. Proc Natl Acad Sci U S A. 2009 Apr 21;106(16):6790-5 [PMID: 19351894]
  35. J Neurosci. 2009 Apr 1;29(13):4263-73 [PMID: 19339620]
  36. Proc Natl Acad Sci U S A. 2010 Nov 2;107(44):19067-72 [PMID: 20956328]
  37. Proc Natl Acad Sci U S A. 2010 Nov 16;107(46):20015-20 [PMID: 21041625]
  38. Proc Natl Acad Sci U S A. 2010 Jul 20;107(29):13135-40 [PMID: 20624964]
  39. Trends Cogn Sci. 2016 Dec;20(12):931-939 [PMID: 27825537]
  40. Front Hum Neurosci. 2015 Nov 04;9:601 [PMID: 26582983]
  41. Cereb Cortex. 2017 Mar 1;27(3):1949-1963 [PMID: 26941380]
  42. Nat Neurosci. 2008 Apr;11(4):426-8 [PMID: 18344993]
  43. J Child Psychol Psychiatry. 2015 Nov;56(11):1212-22 [PMID: 25809052]
  44. Front Hum Neurosci. 2014 Oct 22;8:852 [PMID: 25374531]
  45. Cereb Cortex. 2013 Nov;23(11):2724-33 [PMID: 22923087]
  46. Neuron. 2013 Feb 6;77(3):586-95 [PMID: 23395382]
  47. Soc Neurosci. 2016;11(1):49-59 [PMID: 25833090]
  48. PLoS One. 2014 May 01;9(5):e94423 [PMID: 24788455]
  49. Cereb Cortex. 2014 Oct;24(10):2657-68 [PMID: 23650289]
  50. Neuroimage. 2014 Oct 15;100:619-27 [PMID: 24983711]
  51. Hum Brain Mapp. 2008 Jan;29(1):14-27 [PMID: 17318834]
  52. PLoS Comput Biol. 2005 Sep;1(4):e42 [PMID: 16201007]
  53. Cereb Cortex. 2012 Oct;22(10):2272-84 [PMID: 22047969]
  54. Neuroimage. 2014 Jan 1;84:169-80 [PMID: 23994454]
  55. Proc Natl Acad Sci U S A. 2007 Sep 25;104(39):15531-6 [PMID: 17878310]
  56. Dev Cogn Neurosci. 2015 Feb;11:96-104 [PMID: 25284273]
  57. Hum Brain Mapp. 2015 May;36(5):1995-2013 [PMID: 25641208]
  58. J Neurosci. 2011 Nov 2;31(44):15775-86 [PMID: 22049421]
  59. Cereb Cortex. 2015 May;25(5):1389-404 [PMID: 24335033]
  60. Hum Brain Mapp. 2017 Mar;38(3):1362-1373 [PMID: 27862605]
  61. Neuroimage. 2010 Oct 15;53(1):94-102 [PMID: 20510375]
  62. Proc Natl Acad Sci U S A. 2013 Jan 29;110(5):1929-34 [PMID: 23319644]
  63. Cereb Cortex. 2017 Mar 1;27(3):1795-1807 [PMID: 26874184]
  64. Int J Dev Neurosci. 2014 Feb;32:11-22 [PMID: 23796901]
  65. Front Neuroanat. 2016 Mar 31;10:25 [PMID: 27064378]
  66. Transl Psychiatry. 2015 Feb 17;5:e508 [PMID: 25689569]
  67. Dev Cogn Neurosci. 2016 Apr;18:12-25 [PMID: 26499255]
  68. J Neurosci. 2014 Jul 2;34(27):9067-75 [PMID: 24990927]
  69. PLoS One. 2013 May 13;8(5):e63310 [PMID: 23675475]
  70. Neuroimage. 2015 May 1;111:123-35 [PMID: 25700954]
  71. J Neurosci. 2014 Aug 20;34(34):11288-96 [PMID: 25143609]
  72. Transl Psychiatry. 2014 May 06;4:e388 [PMID: 24802306]
  73. Proc Natl Acad Sci U S A. 2013 Aug 13;110(33):13642-7 [PMID: 23898179]
  74. Neuroimage. 2017 Apr 1;149:379-392 [PMID: 28153637]
  75. Cereb Cortex. 2013 Nov;23(11):2620-31 [PMID: 22933464]
  76. Proc Natl Acad Sci U S A. 2015 May 19;112(20):6485-90 [PMID: 25941391]
  77. PLoS One. 2011;6(9):e24678 [PMID: 21966364]
  78. Nat Neurosci. 2015 Nov;18(11):1664-71 [PMID: 26457551]
  79. Neuroimage. 2016 Jul 1;134:328-337 [PMID: 27046108]
  80. Neuroimage. 2014 Apr 15;90:266-79 [PMID: 24374075]
  81. Trends Cogn Sci. 2012 Mar;16(3):181-8 [PMID: 22341211]
  82. PLoS Comput Biol. 2009 May;5(5):e1000381 [PMID: 19412534]
  83. Cereb Cortex. 2016 Oct 17;26(11):4381-4391 [PMID: 26405055]
  84. Cereb Cortex. 2012 Feb;22(2):455-64 [PMID: 21670100]
  85. Cereb Cortex. 2012 Nov;22(11):2478-85 [PMID: 22109543]
  86. Nat Rev Neurosci. 2012 Apr 13;13(5):336-49 [PMID: 22498897]
  87. Neuroimage. 2006 Oct 15;33(1):27-38 [PMID: 16905335]
  88. Magn Reson Med. 2017 Aug;78(2):794-804 [PMID: 27643791]
  89. Cereb Cortex. 2017 Nov 1;27(11):5230-5241 [PMID: 27664961]
  90. Nat Neurosci. 2000 Sep;3(9):919-26 [PMID: 10966623]
  91. AJNR Am J Neuroradiol. 2009 Feb;30(2):290-6 [PMID: 19001533]
  92. Cereb Cortex. 2011 Jan;21(1):145-54 [PMID: 20421249]
  93. PLoS One. 2011;6(9):e25278 [PMID: 21966479]
  94. Cortex. 2013 Jun;49(6):1711-21 [PMID: 22959979]
  95. Neuroimage. 2012 Feb 1;59(3):2142-54 [PMID: 22019881]
  96. Trends Cogn Sci. 2013 Dec;17(12):683-96 [PMID: 24231140]
  97. Cereb Cortex. 2015 Sep;25(9):2919-28 [PMID: 24812084]
  98. Front Hum Neurosci. 2015 Sep 04;9:478 [PMID: 26388757]

Grants

  1. R01 MH092535/NIMH NIH HHS
  2. U54 HD086984/NICHD NIH HHS

MeSH Term

Brain
Child, Preschool
Connectome
Humans
Infant
Infant, Newborn
Neural Pathways

Word Cloud

Created with Highcharts 10.0.0braindevelopmentdevelopmentalstructuralfunctionalconnectivitylifeframeworkconnectomeyearshumanundergoesrapidgrowthstructurefunctioninfancyearlychildhoodsignificantlyinfluencescognitivebehaviorallaternewlyemergingresearchconnectomicsprovidesunprecedentedopportunitiesexploringdevelopingnon-invasivemappingpatternsWithinreviewrecentneuroimagingneurophysiologicalstudiesinvestigating20postmenstrualweeks5ageSpecificallyhighlightfivefundamentalprinciplesnetworkcriticalfirstemphasizingstrengthenedsegregation/integrationbalanceremarkablehierarchicalorderprimaryhigher-orderregionsunparalleledmaturationssubstantialindividualvariabilityhighvulnerabilityriskfactorsdisordersDevelopmentalConnectomicsInfancyEarlyChildhooddisordergraphtheorysegregationintegration

Similar Articles

Cited By