Optimizing sentinel surveillance in temporal network epidemiology.

Yuan Bai, Bo Yang, Lijuan Lin, Jose L Herrera, Zhanwei Du, Petter Holme
Author Information
  1. Yuan Bai: College of Computer Science and Technology, Jilin University, Changchun, 130012, China.
  2. Bo Yang: College of Computer Science and Technology, Jilin University, Changchun, 130012, China. ybo@jlu.edu.cn. ORCID
  3. Lijuan Lin: College of Computer Science and Technology, Jilin University, Changchun, 130012, China.
  4. Jose L Herrera: Department of Integrative Biology, University of Texas at Austin, Austin, 78705, United States.
  5. Zhanwei Du: Department of Integrative Biology, University of Texas at Austin, Austin, 78705, United States.
  6. Petter Holme: Institute of Innovative Research, Tokyo Institute of Technology, 152-8550, Tokyo, Japan.

Abstract

To help health policy makers gain response time to mitigate infectious disease threats, it is essential to have an efficient epidemic surveillance. One common method of disease surveillance is to carefully select nodes (sentinels, or sensors) in the network to report outbreaks. One would like to choose sentinels so that they discover the outbreak as early as possible. The optimal choice of sentinels depends on the network structure. Studies have addressed this problem for static networks, but this is a first step study to explore designing surveillance systems for early detection on temporal networks. This paper is based on the idea that vaccination strategies can serve as a method to identify sentinels. The vaccination problem is a related question that is much more  well studied for temporal networks. To assess the ability to detect epidemic outbreaks early, we calculate the time difference (lead time) between the surveillance set and whole population in reaching 1% prevalence. We find that the optimal selection of sentinels depends on both the network's temporal structures and the infection probability of the disease. We find that, for a mild infectious disease (low infection probability) on a temporal network in relation to potential disease spreading (the Prostitution network), the strategy of selecting latest contacts of random individuals provide the most amount of lead time. And for a more uniform, synthetic network with community structure the strategy of selecting frequent contacts of random individuals provide the most amount of lead time.

References

  1. Clin Infect Dis. 2009 Nov 15;49(10):1557-64 [PMID: 19845471]
  2. Epidemiology. 2010 Nov;21(6):760-3 [PMID: 20924229]
  3. N Engl J Med. 2016 Mar 10;374(10):951-8 [PMID: 26862926]
  4. Mayo Clin Proc. 2010 Jan;85(1):64-76 [PMID: 20007905]
  5. PLoS One. 2010 Nov 29;5(11):e14118 [PMID: 21124761]
  6. Proc Natl Acad Sci U S A. 2004 Oct 5;101(40):14333-7 [PMID: 15448210]
  7. BMC Med Inform Decis Mak. 2012 Feb 03;12:4 [PMID: 22305256]
  8. Phys Rev E Stat Nonlin Soft Matter Phys. 2008 Oct;78(4 Pt 2):046110 [PMID: 18999496]
  9. PLoS Comput Biol. 2011 Mar;7(3):e1001109 [PMID: 21445228]
  10. PLoS Comput Biol. 2016 Jul 14;12(7):e1004928 [PMID: 27415615]
  11. PLoS Comput Biol. 2017 Sep 11;13(9):e1005696 [PMID: 28892481]
  12. J Community Health. 2011 Oct;36(5):857-63 [PMID: 21380790]
  13. Phys Rev Lett. 2007 Apr 13;98(15):158702 [PMID: 17501392]
  14. Phys Rev Lett. 2014 Mar 21;112(11):118702 [PMID: 24702426]
  15. J Theor Biol. 2013 Nov 21;337:89-100 [PMID: 23871715]
  16. PLoS One. 2013 Dec 09;8(12):e83672 [PMID: 24349542]
  17. Proc Natl Acad Sci U S A. 2010 Mar 30;107(13):5706-11 [PMID: 20231480]
  18. PLoS One. 2012;7(5):e36439 [PMID: 22586472]
  19. J Infect Dis. 2006 Nov 1;194 Suppl 2:S82-91 [PMID: 17163394]
  20. Nature. 2005 Nov 17;438(7066):355-9 [PMID: 16292310]
  21. Phys Rev Lett. 2013 Nov 1;111(18):188701 [PMID: 24237569]
  22. PLoS One. 2010 Sep 15;5(9):e12948 [PMID: 20856792]
  23. Phys Rev Lett. 2003 Dec 12;91(24):247901 [PMID: 14683159]
  24. Comput Methods Programs Biomed. 2010 Oct;100(1):16-23 [PMID: 20236725]
  25. N Engl J Med. 2016 Feb 18;374(7):601-4 [PMID: 26761185]
  26. Nature. 2009 Feb 19;457(7232):1012-4 [PMID: 19020500]
  27. Phys Rev E Stat Nonlin Soft Matter Phys. 2010 Apr;81(4 Pt 2):046120 [PMID: 20481799]
  28. J Med Syst. 2011 Oct;35(5):1153-64 [PMID: 21607707]

MeSH Term

Contact Tracing
Disease Outbreaks
Female
Humans
Male
Models, Statistical
Prevalence
Sentinel Surveillance
Sex Work
Sexually Transmitted Diseases
Social Networking
Vaccination

Word Cloud

Created with Highcharts 10.0.0networktimediseasesurveillancesentinelstemporalearlynetworksleadinfectiousepidemicOnemethodoutbreaksoptimaldependsstructureproblemvaccinationfindinfectionprobabilitystrategyselectingcontactsrandomindividualsprovideamounthelphealthpolicymakersgainresponsemitigatethreatsessentialefficientcommoncarefullyselectnodessensorsreportlikechoosediscoveroutbreakpossiblechoiceStudiesaddressedstaticfirst stepstudyexploredesigningsystemsdetectionpaperbasedideastrategiescanserveidentifyrelatedquestionmuch more wellstudiedassessabilitydetectcalculatedifferencesetwholepopulationreaching1%prevalenceselectionnetwork'sstructuresmildlowrelationpotentialspreadingProstitutionlatestuniformsyntheticcommunityfrequentOptimizingsentinelepidemiology

Similar Articles

Cited By