cAMP-dependent regulation of single-channel kinetics.

Emely Thompson, Jodene Eldstrom, Maartje Westhoff, Donald McAfee, Elise Balse, David Fedida
Author Information
  1. Emely Thompson: Department of Anesthesiology, Pharmacology, and Therapeutics, University of British Columbia, Vancouver, BC, Canada.
  2. Jodene Eldstrom: Department of Anesthesiology, Pharmacology, and Therapeutics, University of British Columbia, Vancouver, BC, Canada.
  3. Maartje Westhoff: Department of Anesthesiology, Pharmacology, and Therapeutics, University of British Columbia, Vancouver, BC, Canada.
  4. Donald McAfee: Department of Anesthesiology, Pharmacology, and Therapeutics, University of British Columbia, Vancouver, BC, Canada.
  5. Elise Balse: Sorbonne Universités, UPMC Univ Paris 06, INSERM, UMR_S 1166, Unité de recherche sur les maladies cardiovasculaires, le métabolisme et la nutrition, Faculté de Médecine, Site Pitié-Salpêtrière, Paris, France.
  6. David Fedida: Department of Anesthesiology, Pharmacology, and Therapeutics, University of British Columbia, Vancouver, BC, Canada david.fedida@ubc.ca. ORCID

Abstract

The delayed potassium rectifier current, , is composed of KCNQ1 and KCNE1 subunits and plays an important role in cardiac action potential repolarization. During β-adrenergic stimulation, 3'-5'-cyclic adenosine monophosphate (cAMP)-dependent protein kinase A (PKA) phosphorylates KCNQ1, producing an increase in current and a shortening of the action potential. Here, using cell-attached macropatches and single-channel recordings, we investigate the microscopic mechanisms underlying the cAMP-dependent increase in current. A membrane-permeable cAMP analog, 8-(4-chlorophenylthio)-cAMP (8-CPT-cAMP), causes a marked leftward shift of the conductance-voltage relation in macropatches, with or without an increase in current size. Single channels exhibit fewer silent sweeps, reduced first latency to opening (control, 1.61 ± 0.13 s; cAMP, 1.06 ± 0.11 s), and increased higher-subconductance-level occupancy in the presence of cAMP. The E160R/R237E and S209F KCNQ1 mutants, which show fixed and enhanced voltage sensor activation, respectively, largely abolish the effect of cAMP. The phosphomimetic KCNQ1 mutations, S27D and S27D/S92D, are much less and not at all responsive, respectively, to the effects of PKA phosphorylation (first latency of S27D + KCNE1 channels: control, 1.81 ± 0.1 s; 8-CPT-cAMP, 1.44 ± 0.1 s, P < 0.05; latency of S27D/S92D + KCNE1: control, 1.62 ± 0.1 s; cAMP, 1.43 ± 0.1 s, nonsignificant). Using total internal reflection fluorescence microscopy, we find no overall increase in surface expression of the channel during exposure to 8-CPT-cAMP. Our data suggest that the cAMP-dependent increase in current is caused by an increase in the likelihood of channel opening, combined with faster openings and greater occupancy of higher subconductance levels, and is mediated by enhanced voltage sensor activation.

References

  1. Nature. 1996 Nov 7;384(6604):80-3 [PMID: 8900283]
  2. Proc Natl Acad Sci U S A. 2013 Oct 8;110(41):E3955-64 [PMID: 24065831]
  3. Sci Signal. 2013 Jun 04;6(278):rs11 [PMID: 23737553]
  4. Science. 1988 Nov 18;242(4881):1042-5 [PMID: 3194754]
  5. J Pharmacol Sci. 2015 May;128(1):1-7 [PMID: 26002253]
  6. Mol Biol Cell. 2001 Feb;12(2):255-64 [PMID: 11179413]
  7. Channels (Austin). 2007 Mar-Apr;1(2):124-34 [PMID: 18690021]
  8. J Physiol. 2015 Jun 15;593(12):2605-15 [PMID: 25653179]
  9. Proc Natl Acad Sci U S A. 2008 Sep 16;105(37):13835-40 [PMID: 18772391]
  10. Circulation. 2000 Sep 5;102(10):1178-85 [PMID: 10973849]
  11. J Physiol. 1998 Jul 1;510 ( Pt 1):37-45 [PMID: 9625865]
  12. Methods Mol Biol. 2013;998:201-8 [PMID: 23529431]
  13. J Gen Physiol. 2010 May;135(5):433-48 [PMID: 20421371]
  14. J Gen Physiol. 1990 Jul;96(1):195-215 [PMID: 2170562]
  15. Am Heart J. 1975 Dec;90(6):795-803 [PMID: 903]
  16. Elife. 2016 Jan 23;5: [PMID: 26802629]
  17. J Clin Invest. 1998 Feb 15;101(4):737-45 [PMID: 9466967]
  18. J Gen Physiol. 2010 Jun;135(6):595-606 [PMID: 20479111]
  19. J Biol Chem. 2009 Nov 20;284(47):32869-80 [PMID: 19797056]
  20. Nature. 1996 Nov 7;384(6604):78-80 [PMID: 8900282]
  21. Circulation. 2004 May 25;109(20):2394-7 [PMID: 15159330]
  22. J Physiol. 1999 Jul 15;518 ( Pt 2):371-84 [PMID: 10381586]
  23. J Physiol. 2003 Sep 15;551(Pt 3):777-86 [PMID: 12819301]
  24. Circ Res. 2000 Jul 7;87(1):33-8 [PMID: 10884369]
  25. J Biol Chem. 2012 Aug 24;287(35):29815-24 [PMID: 22778270]
  26. Circulation. 2005 Sep 6;112(10):1392-9 [PMID: 16129791]
  27. Nat Genet. 1996 Jan;12(1):17-23 [PMID: 8528244]
  28. J Biol Chem. 2005 Sep 9;280(36):31347-52 [PMID: 16002409]
  29. Mol Pharmacol. 2009 Nov;76(5):935-41 [PMID: 19684092]
  30. J Physiol. 2008 Sep 1;586(17):4179-91 [PMID: 18599533]
  31. Science. 2002 Jan 18;295(5554):496-9 [PMID: 11799244]
  32. J Biol Chem. 2013 Dec 6;288(49):35358-71 [PMID: 24142691]
  33. J Biol Chem. 1995 Jun 16;270(24):14611-8 [PMID: 7782324]
  34. Nat Genet. 1997 Nov;17(3):338-40 [PMID: 9354802]
  35. Proc Natl Acad Sci U S A. 2003 Feb 18;100(4):2122-7 [PMID: 12566567]
  36. Circ Res. 2005 Mar 18;96(5):e25-34 [PMID: 15731462]
  37. Circulation. 1991 Sep;84(3):1136-44 [PMID: 1884444]
  38. Elife. 2014 Dec 23;3:e03606 [PMID: 25535795]
  39. Proc Natl Acad Sci U S A. 2013 Mar 12;110(11):E996-1005 [PMID: 23431135]
  40. J Biol Chem. 2004 Sep 24;279(39):40778-87 [PMID: 15272004]
  41. J Pharmacol Exp Ther. 2004 Jul;310(1):108-15 [PMID: 14996950]
  42. Circulation. 2005 Sep 6;112(10):1384-91 [PMID: 16129795]
  43. Science. 2003 Jan 10;299(5604):251-4 [PMID: 12522251]
  44. Heart Rhythm. 2015 Feb;12(2):386-94 [PMID: 25444851]
  45. EMBO J. 2009 Jul 22;28(14):1994-2005 [PMID: 19521339]
  46. Hum Mol Genet. 1999 Aug;8(8):1499-507 [PMID: 10400998]

MeSH Term

Amino Acid Substitution
Animals
CHO Cells
Cell Line
Cricetinae
Cricetulus
Cyclic AMP
Ion Channel Gating
KCNQ1 Potassium Channel
Mice

Chemicals

KCNQ1 Potassium Channel
Cyclic AMP

Word Cloud

Created with Highcharts 10.0.010cAMPincrease±scurrentKCNQ1cAMP-dependent8-CPT-cAMPlatencycontrolKCNE1actionpotentialPKAmacropatchessingle-channelfirstopeningoccupancyenhancedvoltagesensoractivationrespectivelyS27DS27D/S92D+channeldelayedpotassiumrectifiercomposedsubunitsplaysimportantrolecardiacrepolarizationβ-adrenergicstimulation3'-5'-cyclicadenosinemonophosphate-dependentproteinkinasephosphorylatesproducingshorteningusingcell-attachedrecordingsinvestigatemicroscopicmechanismsunderlyingmembrane-permeableanalog8-4-chlorophenylthio-cAMPcausesmarkedleftwardshiftconductance-voltagerelationwithoutsizeSinglechannelsexhibitfewersilentsweepsreduced61130611increasedhigher-subconductance-levelpresenceE160R/R237ES209Fmutantsshowfixedlargelyabolisheffectphosphomimeticmutationsmuchlessresponsiveeffectsphosphorylationchannels:8144P<05KCNE1:6243nonsignificantUsingtotalinternalreflectionfluorescencemicroscopyfindoverallsurfaceexpressionexposuredatasuggestcausedlikelihoodcombinedfasteropeningsgreaterhighersubconductancelevelsmediatedregulationkinetics

Similar Articles

Cited By