Quantifying and Modeling Coordination and Coherence in Pedestrian Groups.

Adam W Kiefer, Kevin Rio, Stéphane Bonneaud, Ashley Walton, William H Warren
Author Information
  1. Adam W Kiefer: Department of Cognitive, Linguistic and Psychological Sciences, Brown UniversityProvidence, RI, United States.
  2. Kevin Rio: Department of Cognitive, Linguistic and Psychological Sciences, Brown UniversityProvidence, RI, United States.
  3. Stéphane Bonneaud: Department of Cognitive, Linguistic and Psychological Sciences, Brown UniversityProvidence, RI, United States.
  4. Ashley Walton: Center for Cognition, Action and Perception, Department of Psychology, University of CincinnatiCincinnati, OH, United States.
  5. William H Warren: Department of Cognitive, Linguistic and Psychological Sciences, Brown UniversityProvidence, RI, United States.

Abstract

Coherent collective behavior emerges from local interactions between individuals that generate group dynamics. An outstanding question is how to quantify group coordination of non-rhythmic behavior, in order to understand the nature of these dynamics at both a local and global level. We investigate this problem in the context of a small group of four pedestrians walking to a goal, treating their speed, and heading as behavioral variables. To measure the local coordination between pairs of pedestrians, we employ cross-correlation to estimate coupling strength and cross-recurrence quantification (CRQ) analysis to estimate dynamic stability. When compared to reshuffled virtual control groups, the results indicate lower-dimensional behavior and a stronger, more stable coupling of walking speed in real groups. There were no differences in heading alignment observed between the real and virtual groups, due to the common goal. By modeling the local speed coupling, we can simulate coordination at the dyad and group levels. The findings demonstrate spontaneous coordination in pedestrian groups that gives rise to coherent global behavior. They also offer a methodological approach for investigating group dynamics in more complex settings.

Keywords

References

  1. Proc Natl Acad Sci U S A. 2010 Jul 13;107(28):12576-80 [PMID: 20616032]
  2. Proc Natl Acad Sci U S A. 2010 Jun 29;107(26):11865-70 [PMID: 20547832]
  3. Psychol Rev. 2006 Apr;113(2):358-89 [PMID: 16637765]
  4. Exp Brain Res. 2007 Jun;180(2):303-19 [PMID: 17273872]
  5. Exp Brain Res. 1999 Jun;126(3):289-306 [PMID: 10382616]
  6. J Exp Psychol Hum Percept Perform. 2003 Apr;29(2):343-62 [PMID: 12760620]
  7. Front Psychol. 2011 Mar 09;2:38 [PMID: 21716606]
  8. Nat Neurosci. 2001 Feb;4(2):213-6 [PMID: 11175884]
  9. Psychol Sci. 2007 May;18(5):407-13 [PMID: 17576280]
  10. Hum Mov Sci. 2012 Oct;31(5):1253-67 [PMID: 22406503]
  11. J Vis. 2014 Feb 07;14(2):null [PMID: 24511143]
  12. Interface Focus. 2012 Dec 6;2(6):764-73 [PMID: 23173077]
  13. Biol Cybern. 2007 Jan;96(1):59-78 [PMID: 16953458]
  14. Proc Natl Acad Sci U S A. 2008 Jan 29;105(4):1232-7 [PMID: 18227508]
  15. J Appl Physiol (1985). 1994 Feb;76(2):965-73 [PMID: 8175612]
  16. J Exp Psychol Hum Percept Perform. 2003 Apr;29(2):326-32 [PMID: 12760618]

Word Cloud

Created with Highcharts 10.0.0groupcoordinationbehaviorlocalgroupsdynamicsspeedcouplingglobalpedestrianswalkinggoalheadingestimatecross-recurrencequantificationanalysisvirtualrealCoherentcollectiveemergesinteractionsindividualsgenerateoutstandingquestionquantifynon-rhythmicorderunderstandnaturelevelinvestigateproblemcontextsmallfourtreatingbehavioralvariablesmeasurepairsemploycross-correlationstrengthCRQdynamicstabilitycomparedreshuffledcontrolresultsindicatelower-dimensionalstrongerstabledifferencesalignmentobservedduecommonmodelingcansimulatedyadlevelsfindingsdemonstratespontaneouspedestriangivesrisecoherentalsooffermethodologicalapproachinvestigatingcomplexsettingsQuantifyingModelingCoordinationCoherencePedestrianGroupslocomotionprincipalcomponents

Similar Articles

Cited By