A Latent Factor Analysis of Working Memory Measures Using Large-Scale Data.

Otto Waris, Anna Soveri, Miikka Ahti, Russell C Hoffing, Daniel Ventus, Susanne M Jaeggi, Aaron R Seitz, Matti Laine
Author Information
  1. Otto Waris: Department of Psychology, Åbo Akademi UniversityTurku, Finland.
  2. Anna Soveri: Department of Psychology, Åbo Akademi UniversityTurku, Finland.
  3. Miikka Ahti: Department of Psychology, University of TurkuTurku, Finland.
  4. Russell C Hoffing: Department of Psychology, University of California, Riverside, RiversideCA, United States.
  5. Daniel Ventus: Department of Psychology, Åbo Akademi UniversityTurku, Finland.
  6. Susanne M Jaeggi: School of Education, University of California, Irvine, IrvineCA, United States.
  7. Aaron R Seitz: Department of Psychology, University of California, Riverside, RiversideCA, United States.
  8. Matti Laine: Department of Psychology, Åbo Akademi UniversityTurku, Finland.

Abstract

Working memory (WM) is a key cognitive system that is strongly related to other cognitive domains and relevant for everyday life. However, the structure of WM is yet to be determined. A number of WM models have been put forth especially by factor analytical studies. In broad terms, these models vary by their emphasis on WM contents (e.g., visuospatial, verbal) vs. WM processes (e.g., maintenance, updating) as critical, dissociable elements. Here we conducted confirmatory and exploratory factor analyses on a broad set of WM tasks, half of them numerical-verbal and half of them visuospatial, representing four commonly used task paradigms: simple span, complex span, running memory, and -back. The tasks were selected to allow the detection of both content-based (visuospatial, numerical-verbal) and process-based (maintenance, updating) divisions. The data were collected online which allowed the recruitment of a large and demographically diverse sample of adults ( = 711). Both factor analytical methods pointed to a clear division according to task content for all paradigms except -back, while there was no indication for a process-based division. Besides the content-based division, confirmatory factor analyses supported a model that also included a general WM factor. The -back tasks had the highest loadings on the general factor, suggesting that this factor reflected high-level cognitive resources such as executive functioning and fluid intelligence that are engaged with all WM tasks, and possibly even more so with the -back. Together with earlier findings that indicate high variability of process-based WM divisions, we conclude that the most robust division of WM is along its contents (visuospatial vs. numerical-verbal), rather than along its hypothetical subprocesses.

Keywords

References

  1. J Exp Psychol Learn Mem Cogn. 2007 May;33(3):615-622 [PMID: 17470009]
  2. Br J Psychol. 2004 Feb;95(Pt 1):57-79 [PMID: 15005868]
  3. Cereb Cortex. 2013 Feb;23(2):264-82 [PMID: 22314046]
  4. Neuroimage. 2004 Mar;21(3):1026-36 [PMID: 15006670]
  5. Proc Natl Acad Sci U S A. 1996 Nov 26;93(24):13468-72 [PMID: 8942958]
  6. Psychon Bull Rev. 2015 Apr;22(2):366-77 [PMID: 25102926]
  7. Psychometrika. 1965 Jun;30:179-85 [PMID: 14306381]
  8. Hum Brain Mapp. 2005 May;25(1):46-59 [PMID: 15846822]
  9. Psychol Res. 2008 Jul;72(4):451-60 [PMID: 17851684]
  10. Behav Res Methods. 2010 May;42(2):563-70 [PMID: 20479188]
  11. J Int Neuropsychol Soc. 2006 Sep;12(5):677-87 [PMID: 16961949]
  12. J Exp Psychol. 1959 Mar;57(3):137-46 [PMID: 13641585]
  13. Psychon Bull Rev. 2017 Aug;24(4):1077-1096 [PMID: 28116702]
  14. J Exp Psychol Learn Mem Cogn. 2009 Jul;35(4):1089-1096 [PMID: 19586272]
  15. Acta Psychol (Amst). 2014 May;148:123-9 [PMID: 24525166]
  16. PLoS One. 2015 Mar 30;10(3):e0116946 [PMID: 25822348]
  17. Psychol Bull. 2007 Nov;133(6):1038-66 [PMID: 17967093]
  18. J Exp Psychol Gen. 1999 Sep;128(3):309-331 [PMID: 10513398]
  19. Biol Psychiatry. 2003 Sep 1;54(5):573-83 [PMID: 12946886]
  20. Psychon Bull Rev. 2013 Dec;20(6):1102-13 [PMID: 23733330]
  21. J Exp Psychol Gen. 2004 Jun;133(2):189-217 [PMID: 15149250]
  22. Psychol Bull. 1990 Mar;107(2):238-46 [PMID: 2320703]
  23. Multivariate Behav Res. 1982 Apr 1;17(2):253-69 [PMID: 26810950]
  24. Psychol Bull. 2005 Jan;131(1):66-71 [PMID: 15631552]
  25. Behav Res Methods. 2014 Dec;46(4):1023-31 [PMID: 24356996]
  26. PLoS One. 2013;8(3):e57410 [PMID: 23516406]
  27. J Neurosci. 2009 Oct 28;29(43):13735-41 [PMID: 19864586]
  28. Br J Educ Psychol. 2000 Jun;70 ( Pt 2):177-94 [PMID: 10900777]
  29. Memory. 2006 Oct;14(7):804-13 [PMID: 16938693]
  30. Psychon Bull Rev. 2016 Feb;23(1):331-7 [PMID: 26518308]
  31. Assessment. 2008 Dec;15(4):426-34 [PMID: 18483192]
  32. Cogn Psychol. 2000 Aug;41(1):49-100 [PMID: 10945922]
  33. Cogn Psychol. 2014 Jun;71:1-26 [PMID: 24531497]
  34. J Exp Psychol Gen. 2001 Dec;130(4):621-640 [PMID: 11757872]
  35. Neurol Sci. 2013 May;34(5):749-54 [PMID: 22689311]
  36. Psychol Rev. 1998 Jan;105(1):158-73 [PMID: 9450375]
  37. Memory. 2014;22(4):426-41 [PMID: 23745736]
  38. Science. 1999 Mar 12;283(5408):1657-61 [PMID: 10073923]
  39. Front Psychol. 2014 Dec 23;5:1475 [PMID: 25566149]
  40. J Exp Psychol Gen. 1996 Mar;125(1):4-27 [PMID: 8851737]
  41. Br J Psychol. 2002 Nov;93(Pt 4):501-18 [PMID: 12519531]
  42. Front Psychol. 2013 Jul 24;4:433 [PMID: 23898309]
  43. Psychon Bull Rev. 2012 Oct;19(5):779-819 [PMID: 22715024]
  44. Mem Cognit. 2006 Jan;34(1):158-71 [PMID: 16686115]
  45. J Exp Psychol Learn Mem Cogn. 2010 May;36(3):813-820 [PMID: 20438278]
  46. Mem Cognit. 2014 Apr;42(3):464-80 [PMID: 24081919]
  47. Memory. 2010 May;18(4):394-412 [PMID: 20408039]
  48. Psychon Bull Rev. 2005 Oct;12(5):769-86 [PMID: 16523997]
  49. Behav Res Methods. 2014 Mar;46(1):112-30 [PMID: 23835650]
  50. Neuropsychology. 2010 Mar;24(2):222-243 [PMID: 20230116]
  51. Psychon Bull Rev. 2012 Oct;19(5):847-57 [PMID: 22829343]
  52. Child Dev. 2006 Nov-Dec;77(6):1698-716 [PMID: 17107455]
  53. Neuroimage. 2011 Jan 1;54(1):550-9 [PMID: 20691275]
  54. Arch Clin Neuropsychol. 2009 Nov;24(7):711-7 [PMID: 19767297]

Grants

  1. K02 AG054665/NIA NIH HHS
  2. R01 MH111742/NIMH NIH HHS

Word Cloud

Created with Highcharts 10.0.0WMfactormemoryvisuospatialtasksspan-backdivisioncognitiveconfirmatorynumerical-verbaltaskprocess-basedWorkingmodelsanalyticalbroadcontentsegvsmaintenanceupdatingexploratoryanalyseshalfsimplecomplexrunningcontent-baseddivisionsgeneralalonganalysiskeysystemstronglyrelateddomainsrelevanteverydaylifeHoweverstructureyetdeterminednumberputforthespeciallystudiestermsvaryemphasisverbalprocessescriticaldissociableelementsconductedsetrepresentingfourcommonlyusedparadigms:selectedallowdetectiondatacollectedonlineallowedrecruitmentlargedemographicallydiversesampleadults=711methodspointedclearaccordingcontentparadigmsexceptindicationBesidessupportedmodelalsoincludedhighestloadingssuggestingreflectedhigh-levelresourcesexecutivefunctioningfluidintelligenceengagedpossiblyevenTogetherearlierfindingsindicatehighvariabilityconcluderobustratherhypotheticalsubprocessesLatentFactorAnalysisMemoryMeasuresUsingLarge-ScaleDatalatentvariablen-backworking

Similar Articles

Cited By