Comparison and Contrast of Two General Functional Regression Modeling Frameworks.

Jeffrey S Morris
Author Information
  1. Jeffrey S Morris: The University of Texas, MD Anderson Cancer Center, Unit 1411, PO Box 301402, Houston, TX 77230-1402.

Abstract

In this article, Greven and Scheipl describe an impressively general framework for performing functional regression that builds upon the generalized additive modeling framework. Over the past number of years, my collaborators and I have also been developing a general framework for functional regression, functional mixed models, which shares many similarities with this framework, but has many differences as well. In this discussion, I compare and contrast these two frameworks, to hopefully illuminate characteristics of each, highlighting their respecitve strengths and weaknesses, and providing recommendations regarding the settings in which each approach might be preferable.

Keywords

References

  1. J Am Stat Assoc. 2015 Dec 1;110(512):1479-1490 [PMID: 27019543]
  2. J Comput Graph Stat. 2015 Apr 1;24(2):477-501 [PMID: 26347592]
  3. J Am Stat Assoc. 2016;111(514):772-786 [PMID: 28018013]
  4. J Comput Graph Stat. 2014;23(1):249-269 [PMID: 24729671]
  5. Biometrics. 2015 Sep;71(3):563-74 [PMID: 25787146]
  6. Stat Sin. 2013 Jan 1;23(1):119-143 [PMID: 24478567]
  7. Stat Interface. 2012 Jan 1;5(1):117-135 [PMID: 23814640]
  8. Ann Appl Stat. 2009 Mar 1;3(1):458-488 [PMID: 20221415]
  9. J Am Stat Assoc. 2011 Sep 1;106(495):1167-1179 [PMID: 22308015]
  10. Biostatistics. 2010 Jul;11(3):432-52 [PMID: 20156988]
  11. Bioinformatics. 2016 Mar 1;32(5):664-72 [PMID: 26559505]
  12. J R Stat Soc Series B Stat Methodol. 2006 Apr 1;68(2):179-199 [PMID: 19759841]
  13. J Am Stat Assoc. 2006 Dec 1;101(476):1352-1364 [PMID: 19169424]
  14. J Am Stat Assoc. 2019;114(526):495-513 [PMID: 31235987]
  15. Technometrics. 2018;60(1):112-123 [PMID: 29749977]
  16. Comput Stat Data Anal. 2017 Jul;111:88-101 [PMID: 29051679]
  17. J Am Stat Assoc. 2013 Jun 1;108(502):514-526 [PMID: 23997376]
  18. Biometrics. 2008 Jun;64(2):479-89 [PMID: 17888041]
  19. Biometrics. 2012 Dec;68(4):1260-8 [PMID: 22670567]
  20. J Comput Graph Stat. 2011;20(4):852-873 [PMID: 25960627]
  21. Ann Appl Stat. 2011 Jan 1;5(2A):894-923 [PMID: 22408711]

Grants

  1. P30 CA016672/NCI NIH HHS
  2. R01 CA107304/NCI NIH HHS
  3. R01 CA178744/NCI NIH HHS

Word Cloud

Created with Highcharts 10.0.0frameworkfunctionalregressionFunctionalgeneralmodelingmanyarticleGrevenScheipldescribeimpressivelyperformingbuildsupongeneralizedadditivepastnumberyearscollaboratorsalsodevelopingmixedmodelssharessimilaritiesdifferenceswelldiscussioncomparecontrasttwoframeworkshopefullyilluminatecharacteristicshighlightingrespecitvestrengthsweaknessesprovidingrecommendationsregardingsettingsapproachmightpreferableComparisonContrastTwoGeneralRegressionModelingFrameworksBayesiandataanalysisLinearMixedModels

Similar Articles

Cited By