Effects of deoxynivalenol (DON) and its microbial biotransformation product deepoxy-deoxynivalenol (DOM-1) on a trout, pig, mouse, and human cell line.

Elisabeth Mayer, Barbara Novak, Alexandra Springler, Heidi E Schwartz-Zimmermann, Veronika Nagl, Nicole Reisinger, Sabine Hessenberger, Gerd Schatzmayr
Author Information
  1. Elisabeth Mayer: BIOMIN Research Center, Technopark 1, 3430, Tulln an der Donau, Austria. e.mayer@biomin.net. ORCID
  2. Barbara Novak: BIOMIN Research Center, Technopark 1, 3430, Tulln an der Donau, Austria.
  3. Alexandra Springler: BIOMIN Research Center, Technopark 1, 3430, Tulln an der Donau, Austria.
  4. Heidi E Schwartz-Zimmermann: Christian Doppler Laboratory for Mycotoxin Metabolism, Center for Analytical Chemistry, Department of Agrobiotechnology (IFA-Tulln), University of Natural Resources and Life Sciences, Vienna, 3430, Tulln an der Donau, Austria.
  5. Veronika Nagl: BIOMIN Research Center, Technopark 1, 3430, Tulln an der Donau, Austria.
  6. Nicole Reisinger: BIOMIN Research Center, Technopark 1, 3430, Tulln an der Donau, Austria.
  7. Sabine Hessenberger: BIOMIN Research Center, Technopark 1, 3430, Tulln an der Donau, Austria.
  8. Gerd Schatzmayr: BIOMIN Research Center, Technopark 1, 3430, Tulln an der Donau, Austria.

Abstract

Deoxynivalenol (DON), a trichothecene produced by various Fusarium species, is one of the most prevalent food- and feed-associated mycotoxins. The effects of DON and deepoxy-deoxynivalenol (DOM-1) were assessed in five different cell lines from different tissues and species starting from the first line of defense, the trout gill (RTgill-W1) and pig intestinal cells (IPEC-1 and IPEC-J2) over immune cells, as second line of defense (mouse macrophages RAW 264.7) to human liver cells (HepG2). Viability was assessed with a WST-1 assay, except for RTgill-W1, where a neutral red (NR) and sulforhodamine B (SRB) assay was performed. Additionally, more sensitive parameters, such as interleukin-, nitric oxide (NO)-, and albumin-release were determined. Viability was affected by DON at concentrations starting at 10 μmol/L (RTgill-W1), 0.9 μmol/L (IPEC-1), 3.5 μmol/L (IPEC-J2), and 0.9 μmol/L (HepG2), whereas DOM-1 did not have such an effect. Additionally, NO was decreased (0.84 μmol/L DON), whereas interleukin (IL)-6 was increased (0.42 μmol/L DON) in lipopolysaccharide (LPS)-stimulated DON-, but not DOM-1-treated RAW cells. Tumor necrosis factor (TNF)-α release, however, was not affected. Interestingly, albumin secretion of HepG2 cells was decreased by both DON and DOM-1 but at a much higher concentration for DOM-1 (228 versus 0.9 μmol/L for DON). 98.9% of DOM-1 was retrieved by liquid chromatography tandem mass spectrometry at the end of the experiment, proving its stability. In this study, IL-6 was the most sensitive parameter, followed by NO and albumin release and viability for HepG2 and IPEC-1.

Keywords

References

  1. Food Chem Toxicol. 2013 Jul;57:276-83 [PMID: 23562706]
  2. J Toxicol Environ Health A. 2001 Dec 21;64(8):619-36 [PMID: 11766169]
  3. J Chem Ecol. 2013 Jul;39(7):907-18 [PMID: 23846184]
  4. J Appl Toxicol. 2015 Apr;35(4):327-37 [PMID: 25352520]
  5. Toxins (Basel). 2013 Apr 23;5(4):784-820 [PMID: 23612752]
  6. J Clin Invest. 1995 Feb;95(2):669-76 [PMID: 7532188]
  7. Food Chem Toxicol. 1998 May;36(5):409-19 [PMID: 9662416]
  8. J Biol Chem. 1993 Jan 25;268(3):1908-13 [PMID: 7678412]
  9. Food Chem Toxicol. 2015 Oct;84:250-9 [PMID: 26363308]
  10. Mol Nutr Food Res. 2009 Apr;53(4):479-91 [PMID: 19360757]
  11. Nat Toxins. 1994;2(3):105-10 [PMID: 8087428]
  12. Environ Int. 2016 May;91:201-14 [PMID: 26970884]
  13. Mycotoxin Res. 1987 Sep;3(2):85-96 [PMID: 23604943]
  14. Food Chem Toxicol. 2005 May;43(5):755-64 [PMID: 15778016]
  15. Mycotoxin Res. 2017 Feb;33(1):25-37 [PMID: 27817099]
  16. Toxins (Basel). 2015 Nov 05;7(11):4595-609 [PMID: 26556374]
  17. J Toxicol Environ Health B Crit Rev. 2005 Jan-Feb;8(1):39-69 [PMID: 15762554]
  18. Toxicol Appl Pharmacol. 2011 Oct 1;256(1):24-34 [PMID: 21791220]
  19. J Agric Food Chem. 2014 Dec 24;62(51):12462-70 [PMID: 25432004]
  20. Fundam Appl Toxicol. 1984 Apr;4(2 Pt 2):S124-32 [PMID: 6609858]
  21. Toxicol Lett. 2006 Jul 1;164(2):167-76 [PMID: 16442754]
  22. J Toxicol Environ Health A. 1999 May 28;57(2):115-36 [PMID: 10344227]
  23. Arch Anim Nutr. 2004 Apr;58(2):169-80 [PMID: 15195910]
  24. Toxicol Lett. 2014 Aug 17;229(1):190-7 [PMID: 24968060]
  25. Am J Vet Res. 1985 Jan;46(1):169-74 [PMID: 3970424]
  26. Food Chem Toxicol. 2004 Apr;42(4):619-24 [PMID: 15019186]
  27. Histochem Cell Biol. 2011 Jul;136(1):103-15 [PMID: 21681518]
  28. Arch Tierernahr. 2003 Oct;57(5):311-34 [PMID: 14620906]
  29. Biochim Biophys Acta. 1987 Feb 20;923(2):206-13 [PMID: 3814614]
  30. Mycotoxin Res. 2009 Jun;25(2):77-84 [PMID: 23604982]
  31. Interdiscip Toxicol. 2010 Sep;3(3):94-9 [PMID: 21217881]
  32. Toxicology. 1998 Feb 6;125(2-3):203-14 [PMID: 9570333]
  33. Toxicol Sci. 2012 Nov;130(1):180-90 [PMID: 22859312]
  34. Vet Res. 2009 Nov-Dec;40(6):64 [PMID: 19674540]
  35. Mycotoxin Res. 2016 May;32(2):77-83 [PMID: 26920403]
  36. Food Chem Toxicol. 1995 Jun;33(6):433-41 [PMID: 7797171]
  37. Mycotoxin Res. 2015 Aug;31(3):151-64 [PMID: 25989849]
  38. J Nutr. 2010 Nov;140(11):1956-62 [PMID: 20861219]
  39. Mycotoxin Res. 2011 Feb;27(1):49-55 [PMID: 23605622]
  40. Arch Toxicol. 2017 Feb;91(2):699-712 [PMID: 27100115]
  41. Vaccine. 2015 Jul 31;33(32):3881-6 [PMID: 26117152]
  42. Toxins (Basel). 2013 Feb 21;5(2):396-430 [PMID: 23430606]
  43. Histochem Cell Biol. 2006 Mar;125(3):293-305 [PMID: 16215741]
  44. Arch Toxicol. 2010 Sep;84(9):663-79 [PMID: 20798930]
  45. Toxins (Basel). 2016 Sep 08;8(9):null [PMID: 27618100]
  46. Am J Physiol. 1996 Aug;271(2 Pt 1):G249-59 [PMID: 8770040]
  47. Arch Toxicol. 2015 Aug;89(8):1337-46 [PMID: 25033990]
  48. Mol Nutr Food Res. 2006 May;50(6):543-51 [PMID: 16715543]
  49. Anal Bioanal Chem. 2009 Nov;395(5):1261-89 [PMID: 19760193]
  50. Toxicol Sci. 2009 Jun;109(2):247-55 [PMID: 19336499]
  51. Food Chem Toxicol. 2010 Aug-Sep;48(8-9):2154-62 [PMID: 20478350]
  52. Toxicol Lett. 2006 Jun 1;163(3):171-82 [PMID: 16326049]
  53. Fundam Appl Toxicol. 1988 Feb;10(2):276-86 [PMID: 3356314]
  54. Food Addit Contam. 2002 Apr;19(4):379-86 [PMID: 11962696]
  55. Toxicology. 2001 Mar 21;161(1-2):139-49 [PMID: 11295263]
  56. Nature. 1991 Feb 28;349(6312):747-8 [PMID: 2000146]
  57. Mol Nutr Food Res. 2008 Jun;52(6):727-34 [PMID: 18465777]
  58. Toxicol In Vitro. 2006 Sep;20(6):832-40 [PMID: 16472964]
  59. In Vitro Cell Dev Biol Anim. 2009 Mar-Apr;45(3-4):127-34 [PMID: 19184248]
  60. J Nutr. 2002 Sep;132(9):2723-31 [PMID: 12221236]
  61. Toxins (Basel). 2015 Nov 12;7(11):4706-29 [PMID: 26569307]
  62. Toxicol Lett. 2004 Oct 10;153(1):61-73 [PMID: 15342082]
  63. Food Addit Contam Part A Chem Anal Control Expo Risk Assess. 2014;31(1):121-31 [PMID: 24261986]

MeSH Term

Animals
Biotransformation
Cell Line
Cell Survival
Chromatography, Liquid
Cytokines
Humans
Mice
Mycotoxins
Swine
Tandem Mass Spectrometry
Trichothecenes
Trout

Chemicals

Cytokines
Mycotoxins
Trichothecenes
deepoxy-deoxynivalenol
deoxynivalenol

Word Cloud

Created with Highcharts 10.0.0DONDOM-1cells0HepG2lineRTgill-W1IPEC-1NO9 μmol/Lspeciesdeepoxy-deoxynivalenolassesseddifferentcelllinesstartingdefensetroutpigIPEC-J2mouseRAWhumanViabilityassayAdditionallysensitiveaffectedwhereasdecreasedreleasealbuminCellDeoxynivalenoltrichotheceneproducedvariousFusariumoneprevalentfood-feed-associatedmycotoxinseffectsfivetissuesfirstgillintestinalimmunesecondmacrophages2647liverWST-1exceptneutralredNRsulforhodamineBSRBperformedparametersinterleukin-nitricoxide-albumin-releasedeterminedconcentrations10 μmol/L35 μmol/Leffect84 μmol/LinterleukinIL-6increased42 μmol/LlipopolysaccharideLPS-stimulatedDON-DOM-1-treatedTumornecrosisfactorTNFhoweverInterestinglysecretionmuchhigherconcentration228versus989%retrievedliquidchromatographytandemmassspectrometryendexperimentprovingstabilitystudyIL-6parameterfollowedviabilityEffectsdeoxynivalenolmicrobialbiotransformationproductcultureContaminationCytotoxicityFeedstuffFishvitroMetaboliteToxicityTransformation

Similar Articles

Cited By