Fast dose optimization for rotating shield brachytherapy.

Myung Cho, Xiaodong Wu, Hossein Dadkhah, Jirong Yi, Ryan T Flynn, Yusung Kim, Weiyu Xu
Author Information
  1. Myung Cho: Department of Electrical and Computer Engineering, University of Iowa, 4016 Seamans Center, Iowa City, IA, 52242, USA.
  2. Xiaodong Wu: Department of Electrical and Computer Engineering, University of Iowa, 4016 Seamans Center, Iowa City, IA, 52242, USA.
  3. Hossein Dadkhah: Department of Biomedical Engineering, University of Iowa, 1402 Seamans Center, Iowa City, IA, 52242, USA.
  4. Jirong Yi: Department of Electrical and Computer Engineering, University of Iowa, 4016 Seamans Center, Iowa City, IA, 52242, USA.
  5. Ryan T Flynn: Department of Radiation Oncology, University of Iowa, 200 Hawkins Drive, Iowa City, IA, 52242, USA.
  6. Yusung Kim: Department of Radiation Oncology, University of Iowa, 200 Hawkins Drive, Iowa City, IA, 52242, USA.
  7. Weiyu Xu: Department of Electrical and Computer Engineering, University of Iowa, 4016 Seamans Center, Iowa City, IA, 52242, USA.

Abstract

PURPOSE: To provide a fast computational method, based on the proximal graph solver (POGS) - A convex optimization solver using the alternating direction method of multipliers (ADMM), for calculating an optimal treatment plan in rotating shield brachytherapy (RSBT). RSBT treatment planning has more degrees of freedom than conventional high-dose-rate brachytherapy due to the addition of emission direction, and this necessitates a fast optimization technique to enable clinical usage.
METHODS: The multi-helix RSBT (H-RSBT) delivery technique was investigated for five representative cervical cancer patients. Treatment plans were generated for all patients using the POGS method and the commercially available solver IBM ILOG CPLEX. The rectum, bladder, sigmoid colon, high-risk clinical target volume (HR-CTV), and HR-CTV boundary were the structures included in our optimization, which applied an asymmetric dose-volume optimization with smoothness control. Dose calculation resolution was 1 × 1 × 3 mm for all cases. The H-RSBT applicator had 6 helices, with 33.3 mm of translation along the applicator per helical rotation and 1.7 mm spacing between dwell positions, yielding 17.5° emission angle spacing per 5 mm along the applicator.
RESULTS: For each patient, HR-CTV D , HR-CTV D , rectum D , sigmoid D , and bladder D matched within 1% for CPLEX and POGS methods. Also, similar EQD2 values between CPLEX and POGS methods were obtained. POGS was around 18 times faster than CPLEX. For all patients, total optimization times were 32.1-65.4 s for CPLEX and 2.1-3.9 s for POGS.
CONCLUSIONS: POGS reduced treatment plan optimization time approximately 18 times for RSBT with similar HR-CTV D , organ at risk (OAR) D values, and EQD2 values compared to CPLEX, which is significant progress toward clinical translation of RSBT.

Keywords

References

  1. Med Phys. 2017 Apr;44(4):1246-1256 [PMID: 28211070]
  2. Phys Med Biol. 2016 Apr 7;61(7):2838-50 [PMID: 26987680]
  3. Int J Radiat Oncol Biol Phys. 2014 Jul 1;89(3):666-73 [PMID: 24751413]
  4. Med Phys. 2014 Nov;41(11):111709 [PMID: 25370623]
  5. Med Phys. 2006 Nov;33(11):4020-32 [PMID: 17153382]
  6. Int J Radiat Oncol Biol Phys. 2005 Nov 15;63(4):1270-4 [PMID: 16253782]
  7. Med Phys. 2013 May;40(5):051720 [PMID: 23635268]
  8. Radiother Oncol. 2007 May;83(2):148-55 [PMID: 17531904]
  9. Int J Radiat Oncol Biol Phys. 2006 Jun 1;65(2):624-30 [PMID: 16690444]
  10. Radiother Oncol. 2006 Jan;78(1):67-77 [PMID: 16403584]
  11. Australas Phys Eng Sci Med. 2006 Jun;29(2):165-71 [PMID: 16845921]
  12. Med Phys. 2015 Nov;42(11):6579-88 [PMID: 26520749]
  13. Phys Med Biol. 2002 Jul 21;47(14 ):2495-509 [PMID: 12171336]
  14. Radiother Oncol. 2005 Mar;74(3):235-45 [PMID: 15763303]
  15. J Med Phys. 2013 Jul;38(3):148-54 [PMID: 24049323]
  16. Brachytherapy. 2008 Jan-Mar;7(1):12-6 [PMID: 18037356]
  17. Med Phys. 2010 Jul;37(7):3725-37 [PMID: 20831080]
  18. Med Phys. 2001 May;28(5):773-9 [PMID: 11393472]
  19. Med Phys. 2013 Sep;40(9):091704 [PMID: 24007137]
  20. Bioinformation. 2012;8(12):574-7 [PMID: 22829733]
  21. Int J Radiat Oncol Biol Phys. 2005 Mar 15;61(4):1267-75 [PMID: 15752909]
  22. Int J Radiat Oncol Biol Phys. 2008 Nov 1;72(3):820-7 [PMID: 18455325]
  23. Int J Radiat Oncol Biol Phys. 2006 Apr 1;64(5):1360-6 [PMID: 16406395]
  24. Phys Med Biol. 2013 Jun 7;58(11):3931-41 [PMID: 23680601]
  25. Med Phys. 2013 Jan;40(1):011718 [PMID: 23298088]

Grants

  1. P30 CA086862/NCI NIH HHS
  2. R01 EB020665/NIBIB NIH HHS
  3. R41 CA210737/NCI NIH HHS

MeSH Term

Brachytherapy
Humans
Neoplasms
Radiation Dosage
Radiotherapy Dosage
Radiotherapy Planning, Computer-Assisted
Rotation
Time Factors

Word Cloud

Created with Highcharts 10.0.0optimizationPOGSDCPLEXbrachytherapyRSBTHR-CTVtreatmentmmmethodsolverrotatingshieldclinicalcancerpatients1applicatorvaluestimesfastusingdirectionplanplanningemissiontechniqueH-RSBTrectumbladdersigmoid×3translationalongperspacingmethodssimilarEQD218sPURPOSE:providecomputationalbasedproximalgraph-convexalternatingmultipliersADMMcalculatingoptimaldegreesfreedomconventionalhigh-dose-ratedueadditionnecessitatesenableusageMETHODS:multi-helixdeliveryinvestigatedfiverepresentativecervicalTreatmentplansgeneratedcommerciallyavailableIBMILOGcolonhigh-risktargetvolumeboundarystructuresincludedappliedasymmetricdose-volumesmoothnesscontrolDosecalculationresolutioncases6helices33helicalrotation7dwellpositionsyielding17angle5RESULTS:patientmatchedwithin1%Alsoobtainedaroundfastertotal321-65421-39CONCLUSIONS:reducedtimeapproximatelyorganriskOARcomparedsignificantprogresstowardFastdosegynecological

Similar Articles

Cited By