Optogenetic Central Amygdala Stimulation Intensifies and Narrows Motivation for Cocaine.

Shelley M Warlow, Mike J F Robinson, Kent C Berridge
Author Information
  1. Shelley M Warlow: Department of Psychology, University of Michigan, Ann Arbor, Michigan 48109, and smwarlow@umich.edu. ORCID
  2. Mike J F Robinson: Department of Psychology, Wesleyan University, Middletown, Connecticut 06459. ORCID
  3. Kent C Berridge: Department of Psychology, University of Michigan, Ann Arbor, Michigan 48109, and. ORCID

Abstract

Addiction is often characterized by intense motivation for a drug, which may be narrowly focused at the expense of other rewards. Here, we examined the role of amygdala-related circuitry in the amplification and narrowing of motivation focus for intravenous cocaine. We paired optogenetic channelrhodopsin (ChR2) stimulation in either central nucleus of amygdala (CeA) or basolateral amygdala (BLA) of female rats with one particular nose-poke porthole option for earning cocaine infusions (0.3 mg/kg, i.v.). A second alternative porthole earned identical cocaine but without ChR2 stimulation. Consequently, CeA rats quickly came to pursue their CeA ChR2-paired cocaine option intensely and exclusively, elevating cocaine intake while ignoring their alternative cocaine alone option. By comparison, BLA ChR2 pairing failed to enhance cocaine motivation. CeA rats also emitted consummatory bites toward their laser-paired porthole, suggesting that higher incentive salience made that cue more attractive. A separate progressive ratio test of incentive motivation confirmed that CeA ChR2 amplified rats' motivation, raising their breakpoint effort price for cocaine by 10-fold. However, CeA ChR2 laser on its own lacked any reinforcement value: laser by itself was never self-stimulated, not even by the same rats in which it amplified motivation for cocaine. Conversely, CeA inhibition by muscimol/baclofen microinjections prevented acquisition of cocaine self-administration and laser preference, whereas CeA inhibition by optogenetic halorhodopsin suppressed cocaine intake, indicating that CeA circuitry is needed for ordinary cocaine motivation. We conclude that CeA ChR2 excitation paired with a cocaine option specifically focuses and amplifies motivation to produce intense pursuit and consumption focused on that single target. In addiction, intense incentive motivation often becomes narrowly focused on a particular drug of abuse. Here we show that pairing central nucleus of amygdala (CeA) optogenetic stimulation with one option for earning intravenous cocaine makes that option almost the exclusive focus of intense pursuit and consumption. CeA stimulation also elevated the effort cost rats were willing to pay for cocaine and made associated cues become intensely attractive. However, we also show that CeA laser had no reinforcing properties at all when given alone for the same rats. Therefore, CeA laser pairing makes its associated cocaine option and cues become powerfully attractive in a nearly addictive fashion.

Keywords

References

  1. Neuropsychopharmacology. 2011 Jul;36(8):1668-76 [PMID: 21471956]
  2. J Neurosci. 2016 Aug 17;36(33):8612-23 [PMID: 27535909]
  3. J Neurosci Methods. 1980 Dec;3(2):129-49 [PMID: 6110810]
  4. J Comp Physiol Psychol. 1954 Dec;47(6):419-27 [PMID: 13233369]
  5. Neuroscience. 2015 Apr 16;291:203-15 [PMID: 25684750]
  6. Nat Neurosci. 2014 Sep;17(9):1240-8 [PMID: 25064852]
  7. J Comp Physiol Psychol. 1956 Aug;49(4):381-91 [PMID: 13345917]
  8. Neurosci Biobehav Rev. 2015 Oct;57:271-83 [PMID: 26341938]
  9. Eur J Neurosci. 2014 Nov;40(10):3556-72 [PMID: 25229197]
  10. J Neurosci. 2005 Jan 26;25(4):962-70 [PMID: 15673677]
  11. Neuropsychopharmacology. 2001 Jun;24(6):680-90 [PMID: 11331148]
  12. Trends Neurosci. 2006 May;29(5):272-9 [PMID: 16545468]
  13. J Exp Psychol Anim Behav Process. 1982 Jan;8(1):62-85 [PMID: 7057145]
  14. Neuroscience. 1988 Oct;27(1):1-39 [PMID: 3059226]
  15. Nat Neurosci. 2013 Mar;16(3):340-8 [PMID: 23377126]
  16. Neuropsychopharmacology. 2015 Mar 13;40(5):1297-306 [PMID: 25475163]
  17. J Neurosci. 2014 Dec 10;34(50):16567-80 [PMID: 25505310]
  18. Physiol Behav. 2012 Jun 6;106(3):317-24 [PMID: 22450260]
  19. Behav Brain Res. 2006 May 15;169(2):320-4 [PMID: 16527365]
  20. Learn Mem. 2015 Jan 15;22(2):92-100 [PMID: 25593295]
  21. Nat Neurosci. 2005 Feb;8(2):212-9 [PMID: 15657599]
  22. Nature. 2011 Mar 17;471(7338):358-62 [PMID: 21389985]
  23. Proc Natl Acad Sci U S A. 2012 Nov 13;109(46):18932-7 [PMID: 23112197]
  24. J Comp Neurol. 2006 Feb 10;494(5):845-61 [PMID: 16374809]
  25. J Neurosci. 2002 Dec 15;22(24):10958-65 [PMID: 12486191]
  26. Nat Neurosci. 2012 Jun;15(6):816-8 [PMID: 22544310]
  27. Biol Psychiatry. 2013 May 1;73(9):811-8 [PMID: 23374642]
  28. Curr Opin Neurobiol. 2011 Jun;21(3):433-9 [PMID: 21420852]
  29. J Neurosci. 2017 Jun 7;37(23):5670-5680 [PMID: 28495976]
  30. Biol Psychiatry. 2007 Mar 1;61(5):591-8 [PMID: 16893525]
  31. Ann N Y Acad Sci. 2003 Apr;985:174-84 [PMID: 12724158]
  32. Horm Behav. 2015 Nov;76:136-42 [PMID: 25888455]
  33. Neurosci Biobehav Rev. 2006;30(2):148-72 [PMID: 16125239]
  34. J Neurosci. 2009 May 20;29(20):6500-13 [PMID: 19458221]
  35. J Neurosci. 2008 Jul 9;28(28):7184-92 [PMID: 18614688]
  36. Brain Struct Funct. 2016 Jul;221(6):2937-62 [PMID: 26169110]
  37. Neuron. 2011 Dec 8;72(5):721-33 [PMID: 22153370]
  38. J Neurosci Methods. 1996 May;66(1):1-11 [PMID: 8794935]
  39. J Neurosci. 2016 Oct 19;36(42):10831-10842 [PMID: 27798138]
  40. Annu Rev Psychol. 2015 Jan 3;66:1-24 [PMID: 25559113]
  41. Behav Brain Res. 2012 May 1;230(2):399-408 [PMID: 22391118]
  42. Nature. 2015 Jan 15;517(7534):284-92 [PMID: 25592533]
  43. Behav Neurosci. 2014 Feb;128(1):71-82 [PMID: 24512067]
  44. Learn Behav. 2004 Nov;32(4):463-76 [PMID: 15825887]
  45. Nature. 2015 Apr 30;520(7549):675-8 [PMID: 25925480]
  46. Cell Rep. 2015 Jul 21;12(3):525-34 [PMID: 26166563]
  47. Annu Rev Neurosci. 2000;23:155-84 [PMID: 10845062]
  48. Nat Neurosci. 2005 Nov;8(11):1437-9 [PMID: 16251983]
  49. Nature. 2010 Nov 11;468(7321):270-6 [PMID: 21068836]
  50. Trends Neurosci. 1998 Aug;21(8):323-31 [PMID: 9720596]
  51. Nature. 2014 May 22;509(7501):453-8 [PMID: 24814341]

Grants

  1. R01 DA015188/NIDA NIH HHS
  2. R01 MH063649/NIMH NIH HHS
  3. T32 DC000011/NIDCD NIH HHS

MeSH Term

Amygdala
Animals
Behavior, Addictive
Cocaine-Related Disorders
Electric Stimulation
Female
Motivation
Optogenetics
Rats
Rats, Sprague-Dawley
Reinforcement, Psychology
Reward
Self Administration

Word Cloud

Created with Highcharts 10.0.0cocaineCeAmotivationoptionChR2ratslaserintensestimulationamygdalafocusedintravenousoptogeneticportholepairingalsoincentiveattractiveoftendrugnarrowlycircuitryfocuspairedcentralnucleusBLAoneparticularearningalternativeintenselyintakealonemadeamplifiedeffortHoweverinhibitionself-administrationpursuitconsumptionaddictionshowmakesassociatedcuesbecomeAddictioncharacterizedmayexpenserewardsexaminedroleamygdala-relatedamplificationnarrowingchannelrhodopsineitherbasolateralfemalenose-pokeinfusions03mg/kgivsecondearnedidenticalwithoutConsequentlyquicklycamepursueChR2-pairedexclusivelyelevatingignoringcomparisonfailedenhanceemittedconsummatorybitestowardlaser-pairedsuggestinghighersaliencecueseparateprogressiveratiotestconfirmedrats'raisingbreakpointprice10-foldlackedreinforcementvalue:neverself-stimulatedevenConverselymuscimol/baclofenmicroinjectionspreventedacquisitionpreferencewhereashalorhodopsinsuppressedindicatingneededordinaryconcludeexcitationspecificallyfocusesamplifiesproducesingletargetbecomesabusealmostexclusiveelevatedcostwillingpayreinforcingpropertiesgivenThereforepowerfullynearlyaddictivefashionOptogeneticCentralAmygdalaStimulationIntensifiesNarrowsMotivationCocainereward

Similar Articles

Cited By