Effect of Glucose on 3D Cardiac Microtissues Derived from Human Induced Pluripotent Stem Cells.

Michael Balistreri, Justin A Davis, Katherine F Campbell, André Monteiro Da Rocha, Marjorie C Treadwell, Todd J Herron
Author Information
  1. Michael Balistreri: Department of Obstetrics and Gynecology, Von Voigtlander Women's Hospital, University of Michigan, 1500 East Medical Center Drive, Ann Arbor, MI, 48109, USA. michael.balistrerimd@gmail.com. ORCID
  2. Justin A Davis: Department of Obstetrics and Gynecology, Von Voigtlander Women's Hospital, University of Michigan, 1500 East Medical Center Drive, Ann Arbor, MI, 48109, USA.
  3. Katherine F Campbell: Department of Internal Medicine, University of Michigan, Ann Arbor, MI, 48109, USA.
  4. André Monteiro Da Rocha: Department of Internal Medicine, University of Michigan, Ann Arbor, MI, 48109, USA.
  5. Marjorie C Treadwell: Department of Obstetrics and Gynecology, Von Voigtlander Women's Hospital, University of Michigan, 1500 East Medical Center Drive, Ann Arbor, MI, 48109, USA.
  6. Todd J Herron: Department of Internal Medicine, University of Michigan, Ann Arbor, MI, 48109, USA.

Abstract

Maternal hyperglycemia is a risk factor for fetal cardiac anomalies. This study aimed to assess the effect of high glucose on human induced pluripotent stem cell-derived cardiomyocyte self-assembly into 3D microtissues and their calcium handling. Stem cells were differentiated to beating cardiomyocytes using established protocols. On the final day of the differentiation process, cells were treated with control media, 12 mM glucose, or 12 mM mannitol (an osmolality control). Once beating, the cardiac cells were dissociated with trypsin, collected, mixed with collagen, and plated into custom-made silicone micro molds in order to generate 3D cardiac microtissues. A time-lapse microscope took pictures every 4 h to quantify the kinetics of cellular self-assembly of 3D cardiac tissues. Fiber widths were recorded at 4-h intervals and plotted over time to assess cardiomyocyte 3D fiber self-assembly. Microtissue calcium flux was recorded with optical mapping by pacing microtissues at 0.5 and 1.0 Hz. Exposure to high glucose impaired the ability of cardiomyocytes to self-assemble into compact microtissues, but not their ability to spontaneously contract. Glucose-exposed cardiomyocytes took longer to self-assemble and finished as thicker fibers. When cardiac microtissues were paced at 0.5 and 1.0 Hz, those exposed to high glucose had altered calcium handling with shorter calcium transient durations, but larger amplitudes of the calcium transient when compared to controls. Additional studies are needed to elucidate a potential mechanism for these findings. This model provides a novel method to assess the effects of exposures on the cardiomyocytes' intrinsic abilities for organogenesis in 3D.

Keywords

References

  1. Circulation. 1996 Nov 15;94(10):2641-8 [PMID: 8921812]
  2. Immunology. 2006 May;118(1):10-24 [PMID: 16630019]
  3. Cell Stem Cell. 2007 Aug 16;1(2):165-79 [PMID: 18371348]
  4. J Clin Invest. 1992 Sep;90(3):927-35 [PMID: 1326001]
  5. Stem Cells Transl Med. 2016 Dec;5(12 ):1595-1606 [PMID: 27465073]
  6. MMWR Morb Mortal Wkly Rep. 2007 Jan 19;56(2):25-9 [PMID: 17230142]
  7. Teratology. 1989 Mar;39(3):225-31 [PMID: 2727930]
  8. Development. 1993 Oct;119(2):419-31 [PMID: 7904557]
  9. Ann N Y Acad Sci. 2006 Oct;1080:76-84 [PMID: 17132776]
  10. J Clin Invest. 1990 Jan;85(1):305-9 [PMID: 2136864]
  11. Circ Res. 2012 Jun 8;110(12):1556-63 [PMID: 22570367]
  12. Stem Cell Res. 2013 Nov;11(3):1335-47 [PMID: 24095945]
  13. Am J Obstet Gynecol. 2014 Aug;211(2):91-117 [PMID: 24631708]
  14. Ann Intern Med. 2014 Apr 15;160(8):517-25 [PMID: 24733192]
  15. Pediatr Neonatol. 2015 Jun;56(3):183-8 [PMID: 25544042]
  16. Mol Ther. 2011 Apr;19(4):635-8 [PMID: 21455209]
  17. Birth Defects Res A Clin Mol Teratol. 2014 Dec;100(12):934-43 [PMID: 24975483]
  18. J Clin Invest. 2006 Mar;116(3):675-82 [PMID: 16511602]
  19. Circ Res. 1987 Jul;61(1):70-6 [PMID: 3608112]
  20. Cell Stem Cell. 2013 Jan 3;12(1):101-13 [PMID: 23290139]
  21. Curr Diab Rep. 2012 Feb;12(1):24-32 [PMID: 22167469]
  22. Obstet Gynecol. 2005 Mar;105(3):675-85 [PMID: 15738045]
  23. Cardiovasc Res. 2011 Jul 15;91(2):279-88 [PMID: 21602174]
  24. Nat Protoc. 2013 Jan;8(1):162-75 [PMID: 23257984]
  25. Nature. 2009 Jul 2;460(7251):113-7 [PMID: 19571884]
  26. Circ Res. 2009 Feb 27;104(4):e30-41 [PMID: 19213953]
  27. Microsc Microanal. 2005 Jun;11(3):249-59 [PMID: 16060978]
  28. Circ Res. 2014 Jan 17;114(2):354-67 [PMID: 24436431]
  29. J Mol Cell Cardiol. 2016 Feb;91:238-46 [PMID: 26774702]
  30. Pflugers Arch. 2011 Jul;462(1):39-48 [PMID: 21494804]
  31. Circ Arrhythm Electrophysiol. 2016 Apr;9(4):e003638 [PMID: 27069088]

MeSH Term

Calcium
Cell Culture Techniques
Cell Differentiation
Flow Cytometry
Glucose
Humans
Hyperglycemia
Induced Pluripotent Stem Cells
Myocytes, Cardiac
Voltage-Sensitive Dye Imaging

Chemicals

Glucose
Calcium

Word Cloud

Created with Highcharts 10.0.03Dcardiacmicrotissuescalciumglucoseassesshighself-assemblycellscardiomyocytesstemcardiomyocytehandlingStembeatingcontrol12 mMtookrecorded0510 Hzabilityself-assembletransientGlucoseCardiacPluripotentMaternalhyperglycemiariskfactorfetalanomaliesstudyaimedeffecthumaninducedpluripotentcell-deriveddifferentiatedusingestablishedprotocolsfinaldaydifferentiationprocesstreatedmediamannitolosmolalitydissociatedtrypsincollectedmixedcollagenplatedcustom-madesiliconemicromoldsordergeneratetime-lapsemicroscopepicturesevery4 hquantifykineticscellulartissuesFiberwidths4-hintervalsplottedtimefiberMicrotissuefluxopticalmappingpacingExposureimpairedcompactspontaneouslycontractGlucose-exposedlongerfinishedthickerfiberspacedexposedalteredshorterdurationslargeramplitudescomparedcontrolsAdditionalstudiesneededelucidatepotentialmechanismfindingsmodelprovidesnovelmethodeffectsexposurescardiomyocytes'intrinsicabilitiesorganogenesisEffectMicrotissuesDerivedfrom HumanInducedCellsmicrotissueCardiomyocyteHyperglycemiacell

Similar Articles

Cited By