Robust spin correlations at high magnetic fields in the harmonic honeycomb iridates.

K A Modic, B J Ramshaw, J B Betts, Nicholas P Breznay, James G Analytis, Ross D McDonald, Arkady Shekhter
Author Information
  1. K A Modic: Los Alamos National Laboratory, Los Alamos, NM, 87545, USA. modic@cpfs.mpg.de.
  2. B J Ramshaw: Los Alamos National Laboratory, Los Alamos, NM, 87545, USA.
  3. J B Betts: Los Alamos National Laboratory, Los Alamos, NM, 87545, USA.
  4. Nicholas P Breznay: Materials Science Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA. ORCID
  5. James G Analytis: Materials Science Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA.
  6. Ross D McDonald: Los Alamos National Laboratory, Los Alamos, NM, 87545, USA.
  7. Arkady Shekhter: National High Magnetic Field Laboratory, Florida State University, Tallahassee, FL, 32310, USA. ORCID

Abstract

The complex antiferromagnetic orders observed in the honeycomb iridates are a double-edged sword in the search for a quantum spin-liquid: both attesting that the magnetic interactions provide many of the necessary ingredients, while simultaneously impeding access. Focus has naturally been drawn to the unusual magnetic orders that hint at the underlying spin correlations. However, the study of any particular broken symmetry state generally provides little clue about the possibility of other nearby ground states. Here we use magnetic fields approaching 100 Tesla to reveal the extent of the spin correlations in γ-lithium iridate. We find that a small component of field along the magnetic easy-axis melts long-range order, revealing a bistable, strongly correlated spin state. Far from the usual destruction of antiferromagnetism via spin polarization, the high-field state possesses only a small fraction of the total iridium moment, without evidence for long-range order up to the highest attainable magnetic fields.The complex antiferromagnetic orders observed in the honeycomb iridates prevent access to a spin-liquid ground state. Here the authors apply extremely high magnetic fields to destroy the antiferromagnetic order in γ-lithium iridate and reveal a bistable, strongly correlated spin state.

References

  1. Science. 2015 Apr 17;348(6232):317-20 [PMID: 25814065]
  2. Nat Commun. 2014 Jun 27;5:4203 [PMID: 24969742]
  3. Science. 2017 Jun 9;356(6342):1055-1059 [PMID: 28596361]
  4. Phys Rev Lett. 2013 Mar 1;110(9):097204 [PMID: 23496744]
  5. Phys Rev Lett. 2015 Feb 20;114(7):077202 [PMID: 25763972]
  6. Phys Rev Lett. 2009 Jan 9;102(1):017205 [PMID: 19257237]
  7. Phys Rev Lett. 2015 Oct 16;115(16):167204 [PMID: 26550900]
  8. Nature. 2015 Feb 12;518(7538):179-86 [PMID: 25673411]
  9. Phys Rev Lett. 2014 Nov 7;113(19):197201 [PMID: 25415919]

Word Cloud

Created with Highcharts 10.0.0magneticspinstatefieldsantiferromagneticordershoneycombiridatescorrelationsordercomplexobservedaccessgroundrevealγ-lithiumiridatesmalllong-rangebistablestronglycorrelatedhighdouble-edgedswordsearchquantumspin-liquid:attestinginteractionsprovidemanynecessaryingredientssimultaneouslyimpedingFocusnaturallydrawnunusualhintunderlyingHoweverstudyparticularbrokensymmetrygenerallyprovideslittlecluepossibilitynearbystatesuseapproaching100 Teslaextentfindcomponentfieldalongeasy-axismeltsrevealingFarusualdestructionantiferromagnetismviapolarizationhigh-fieldpossessesfractiontotaliridiummomentwithoutevidencehighestattainableThepreventspin-liquidauthorsapplyextremelydestroyRobustharmonic

Similar Articles

Cited By (4)