Novel Methods in Disease Biogeography: A Case Study with Heterosporosis.

Luis E Escobar, Huijie Qiao, Christine Lee, Nicholas B D Phelps
Author Information
  1. Luis E Escobar: Minnesota Aquatic Invasive Species Research Center, University of Minnesota, St. Paul, MN, United States.
  2. Huijie Qiao: Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.
  3. Christine Lee: Minnesota Aquatic Invasive Species Research Center, University of Minnesota, St. Paul, MN, United States.
  4. Nicholas B D Phelps: Minnesota Aquatic Invasive Species Research Center, University of Minnesota, St. Paul, MN, United States.

Abstract

Disease biogeography is currently a promising field to complement epidemiology, and ecological niche modeling theory and methods are a key component. Therefore, applying the concepts and tools from ecological niche modeling to disease biogeography and epidemiology will provide biologically sound and analytically robust descriptive and predictive analyses of disease distributions. As a case study, we explored the ecologically important fish disease Heterosporosis, a relatively poorly understood disease caused by the intracellular microsporidian parasite . We explored two novel ecological niche modeling methods, the minimum-volume ellipsoid (MVE) and the Marble algorithm, which were used to reconstruct the fundamental and the realized ecological niche of , respectively. Additionally, we assessed how the management of occurrence reports can impact the output of the models. Ecological niche models were able to reconstruct a proxy of the fundamental and realized niche for this aquatic parasite, identifying specific areas suitable for Heterosporosis. We found that the conceptual and methodological advances in ecological niche modeling provide accessible tools to update the current practices of spatial epidemiology. However, careful data curation and a detailed understanding of the algorithm employed are critical for a clear definition of the assumptions implicit in the modeling process and to ensure biologically sound forecasts. In this paper, we show how sensitive MVE is to the input data, while Marble algorithm may provide detailed forecasts with a minimum of parameters. We showed that exploring algorithms of different natures such as environmental clusters, climatic envelopes, and logistic regressions (e.g., Marble, MVE, and Maxent) provide different scenarios of potential distribution. Thus, no single algorithm should be used for disease mapping. Instead, different algorithms should be employed for a more informed and complete understanding of the pathogen or parasite in question.

Keywords

References

  1. Am J Trop Med Hyg. 2006 Jul;75(1):9-15 [PMID: 16837700]
  2. Ecol Lett. 2007 Dec;10(12):1115-23 [PMID: 17850335]
  3. Naturwissenschaften. 2008 Jun;95(6):483-91 [PMID: 18320161]
  4. Ecology. 2008 Apr;89(4):1015-22 [PMID: 18481526]
  5. J Aquat Anim Health. 2008 Mar;20(1):45-53 [PMID: 18536502]
  6. Proc Natl Acad Sci U S A. 2009 Nov 17;106 Suppl 2:19644-50 [PMID: 19805041]
  7. Proc Natl Acad Sci U S A. 2009 Nov 17;106 Suppl 2:19659-65 [PMID: 19903876]
  8. Ecol Appl. 2011 Mar;21(2):335-42 [PMID: 21563566]
  9. Annu Rev Public Health. 2012 Apr;33:107-22 [PMID: 22429160]
  10. Int J Health Geogr. 2012 Jun 27;11:23 [PMID: 22738820]
  11. Science. 2013 May 17;340(6134):814-5 [PMID: 23687031]
  12. Rev Panam Salud Publica. 2013 Aug;34(2):135-6 [PMID: 24096979]
  13. Trends Parasitol. 2014 Apr;30(4):205-14 [PMID: 24636356]
  14. Proc Natl Acad Sci U S A. 2014 Jul 15;111(28):10149-54 [PMID: 24982143]
  15. PLoS One. 2014 Aug 08;9(8):e100711 [PMID: 25105746]
  16. Int J Health Geogr. 2014 Sep 25;13:34 [PMID: 25255815]
  17. Acta Trop. 2015 Sep;149:202-11 [PMID: 26048558]
  18. PLoS One. 2015 Aug 05;10(8):e0132027 [PMID: 26244983]
  19. Sci Rep. 2015 Sep 21;5:14232 [PMID: 26387771]
  20. J Fish Dis. 2017 Jan;40(1):11-28 [PMID: 27173916]
  21. Front Microbiol. 2016 Aug 05;7:1174 [PMID: 27547199]
  22. Rev Panam Salud Publica. 2016 Aug;40(2):98 [PMID: 27982364]
  23. Nat Ecol Evol. 2017 Mar 06;1(4):89 [PMID: 28812660]

Word Cloud

Created with Highcharts 10.0.0nicheecologicalmodelingdiseaseprovidealgorithmbiogeographyepidemiologyHeterosporosisparasiteMVEMarbledifferentDiseasemethodstoolsbiologicallysoundexploredminimum-volumeellipsoidusedreconstructfundamentalrealizedmodelsdatadetailedunderstandingemployedforecastsalgorithmscurrentlypromisingfieldcomplementtheorykeycomponentThereforeapplyingconceptswillanalyticallyrobustdescriptivepredictiveanalysesdistributionscasestudyecologicallyimportantfishrelativelypoorlyunderstoodcausedintracellularmicrosporidiantwonovelrespectivelyAdditionallyassessedmanagementoccurrencereportscanimpactoutputEcologicalableproxyaquaticidentifyingspecificareassuitablefoundconceptualmethodologicaladvancesaccessibleupdatecurrentpracticesspatialHowevercarefulcurationcriticalcleardefinitionassumptionsimplicitprocessensurepapershowsensitiveinputmayminimumparametersshowedexploringnaturesenvironmentalclustersclimaticenvelopeslogisticregressionsegMaxentscenariospotentialdistributionThussinglemappingInsteadinformedcompletepathogenquestionNovelMethodsBiogeography:CaseStudyheterosporosisriskmap

Similar Articles

Cited By (4)