In Vitro Assessment of the Antibacterial Potential of Silver Nano-Coatings on Cotton Gauzes for Prevention of Wound Infections.

Federica Paladini, Cinzia Di Franco, Angelica Panico, Gaetano Scamarcio, Alessandro Sannino, Mauro Pollini
Author Information
  1. Federica Paladini: Department of Engineering for Innovation, University of Salento, Via per Monteroni, Lecce 73100, Italy. federica.paladini@unisalento.it.
  2. Cinzia Di Franco: CNR-IFN U.O.S. Bari, Via Amendola 173, Bari 70126, Italy. cinzia.difranco@uniba.it.
  3. Angelica Panico: Department of Engineering for Innovation, University of Salento, Via per Monteroni, Lecce 73100, Italy. angelica.panico@unisalento.it.
  4. Gaetano Scamarcio: CNR-IFN U.O.S. Bari, Via Amendola 173, Bari 70126, Italy. gaetano.scamarcio@uniba.it.
  5. Alessandro Sannino: Department of Engineering for Innovation, University of Salento, Via per Monteroni, Lecce 73100, Italy. alessandro.sannino@unisalento.it.
  6. Mauro Pollini: Department of Engineering for Innovation, University of Salento, Via per Monteroni, Lecce 73100, Italy. mauro.pollini@unisalento.it.

Abstract

Multidrug-resistant organisms are increasingly implicated in acute and chronic wound infections, thus compromising the chance of therapeutic options. The resistance to conventional antibiotics demonstrated by some bacterial strains has encouraged new approaches for the prevention of infections in wounds and burns, among them the use of silver compounds and nanocrystalline silver. Recently, silver wound dressings have become widely accepted in wound healing centers and are commercially available. In this work, novel antibacterial wound dressings have been developed through a silver deposition technology based on the photochemical synthesis of silver nanoparticles. The devices obtained are completely natural and the silver coatings are characterized by an excellent adhesion without the use of any binder. The silver-treated cotton gauzes were characterized through scanning electron microscopy (SEM) and thermo-gravimetric analysis (TGA) in order to verify the distribution and the dimension of the silver particles on the cotton fibers. The effectiveness of the silver-treated gauzes in reducing the bacterial growth and biofilm proliferation has been demonstrated through agar diffusion tests, bacterial enumeration test, biofilm quantification tests, fluorescence and SEM microscopy. Moreover, potential cytotoxicity of the silver coating was evaluated through 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide colorimetric assay (MTT) and the extract method on fibroblasts and keratinocytes. Inductively coupled plasma mass spectrometry (ICP-MS) was performed in order to determine the silver release in different media and to relate the results to the biological characterization. All the results obtained were compared with plain gauzes as a negative control, as well as gauzes treated with a higher silver percentage as a positive control.

Keywords

References

  1. Clin Infect Dis. 2009 Nov 15;49(10):1541-9 [PMID: 19842981]
  2. Int Wound J. 2007 Jun;4(2):114-22 [PMID: 17651227]
  3. J Wound Care. 2008 Nov;17(11):502-8 [PMID: 18978690]
  4. Wound Repair Regen. 2011 Nov;19(6):767-74 [PMID: 22092847]
  5. Lett Appl Microbiol. 2009 Aug;49(2):147-52 [PMID: 19515146]
  6. Int Wound J. 2009 Oct;6(5):396-402 [PMID: 19912397]
  7. Int Wound J. 2013 Oct;10(5):573-8 [PMID: 22734483]
  8. Mater Sci Eng C Mater Biol Appl. 2014 Oct;43:11-20 [PMID: 25175182]
  9. Int Wound J. 2006 Dec;3(4):282-94 [PMID: 17199764]
  10. Burns. 2010 Sep;36(6):751-8 [PMID: 20346592]
  11. J Med Microbiol. 2006 Jan;55(Pt 1):59-63 [PMID: 16388031]
  12. Burns. 2014 May;40(3):416-27 [PMID: 24045072]
  13. Int Wound J. 2012 Jun;9(3):285-94 [PMID: 22066961]
  14. Biomed Res Int. 2014;2014:461756 [PMID: 24783205]
  15. Int Wound J. 2016 Aug;13(4):505-11 [PMID: 26043261]
  16. J Am Acad Dermatol. 2010 Oct;63(4):668-79 [PMID: 20471135]
  17. Burns. 2008 Dec;34(8):1103-7 [PMID: 18538932]
  18. Int Wound J. 2011 Jun;8(3):237-43 [PMID: 21470369]
  19. J Appl Microbiol. 2014 Mar;116(3):710-7 [PMID: 24279872]
  20. Burns. 2011 Feb;37(1):27-35 [PMID: 20961690]
  21. Mater Sci Eng C Mater Biol Appl. 2015;52:1-10 [PMID: 25953533]
  22. Sci Rep. 2013;3:1863 [PMID: 23689505]
  23. APMIS. 2007 Aug;115(8):921-8 [PMID: 17696948]
  24. J Biomed Mater Res B Appl Biomater. 2014 Jul;102(5):1031-7 [PMID: 24307506]
  25. Int J Nanomedicine. 2006;1(4):441-9 [PMID: 17722278]
  26. Biotechnol Adv. 2009 Jan-Feb;27(1):76-83 [PMID: 18854209]
  27. Adv Drug Deliv Rev. 2013 Nov;65(13-14):1803-15 [PMID: 23892192]
  28. Antimicrob Agents Chemother. 2011 Jul;55(7):3432-8 [PMID: 21502618]
  29. Int Wound J. 2012 Aug;9(4):387-96 [PMID: 22640181]
  30. Biomacromolecules. 2015 Jul 13;16(7):1873-85 [PMID: 26082968]
  31. Ther Clin Risk Manag. 2010 Feb 02;6:21-7 [PMID: 20169033]
  32. J Wound Care. 2002 Apr;11(4):125-30 [PMID: 11998592]
  33. Carbohydr Polym. 2014 Jul 17;107:174-81 [PMID: 24702933]
  34. Talanta. 2013 Oct 15;115:94-103 [PMID: 24054566]
  35. J Hosp Infect. 1998 Dec;40(4):257-62 [PMID: 9868616]
  36. Antimicrob Agents Chemother. 2010 Dec;54(12):5120-31 [PMID: 20855737]
  37. Int Wound J. 2010 Oct;7(5):394-405 [PMID: 20626470]
  38. Burns. 2014 Dec;40 Suppl 1:S40-7 [PMID: 25418437]
  39. J Clin Med Res. 2013 Apr;5(2):97-100 [PMID: 23519391]
  40. Mater Sci Eng C Mater Biol Appl. 2015 Oct;55:95-104 [PMID: 26117743]

Word Cloud

Created with Highcharts 10.0.0silverwoundgauzesbacterialbiofilminfectionsdemonstratedusedressingsantibacterialobtainedcharacterizedsilver-treatedcottonmicroscopySEMordertestsresultscontrolMultidrug-resistantorganismsincreasinglyimplicatedacutechronicthuscompromisingchancetherapeuticoptionsresistanceconventionalantibioticsstrainsencouragednewapproachespreventionwoundsburnsamongcompoundsnanocrystallineRecentlybecomewidelyacceptedhealingcenterscommerciallyavailableworknoveldevelopeddepositiontechnologybasedphotochemicalsynthesisnanoparticlesdevicescompletelynaturalcoatingsexcellentadhesionwithoutbinderscanningelectronthermo-gravimetricanalysisTGAverifydistributiondimensionparticlesfiberseffectivenessreducinggrowthproliferationagardiffusionenumerationtestquantificationfluorescenceMoreoverpotentialcytotoxicitycoatingevaluated3-[45-dimethylthiazol-2-yl]-25-diphenyltetrazoliumbromidecolorimetricassayMTTextractmethodfibroblastskeratinocytesInductivelycoupledplasmamassspectrometryICP-MSperformeddeterminereleasedifferentmediarelatebiologicalcharacterizationcomparedplainnegativewelltreatedhigherpercentagepositiveVitroAssessmentAntibacterialPotentialSilverNano-CoatingsCottonGauzesPreventionWoundInfectionsdressinginfection

Similar Articles

Cited By