Community-level regulation of temporal trends in biodiversity.

Nicholas J Gotelli, Hideyasu Shimadzu, Maria Dornelas, Brian McGill, Faye Moyes, Anne E Magurran
Author Information
  1. Nicholas J Gotelli: Department of Biology, University of Vermont, Burlington, VT 05405, USA.
  2. Hideyasu Shimadzu: Department of Mathematical Sciences, Loughborough University, Loughborough, Leicestershire LE11 3TU, UK. ORCID
  3. Maria Dornelas: Centre for Biological Diversity and Scottish Oceans Institute, School of Biology, University of St. Andrews, St. Andrews, Fife KY16 9TH, UK.
  4. Brian McGill: School of Biology and Ecology, Sustainability Solutions Initiative, University of Maine, Orono, ME 04469, USA. ORCID
  5. Faye Moyes: Centre for Biological Diversity and Scottish Oceans Institute, School of Biology, University of St. Andrews, St. Andrews, Fife KY16 9TH, UK.
  6. Anne E Magurran: Centre for Biological Diversity and Scottish Oceans Institute, School of Biology, University of St. Andrews, St. Andrews, Fife KY16 9TH, UK.

Abstract

Many theoretical models of community dynamics predict that species richness () and total abundance () are regulated in their temporal fluctuations. We present novel evidence for widespread regulation of biodiversity. For 59 plant and animal assemblages from around the globe monitored annually for a decade or more, the majority exhibited regulated fluctuations compared to the null hypothesis of an unconstrained random walk. However, there was little evidence for statistical artifacts, regulation driven by correlations with average annual temperature, or local-scale compensatory fluctuations in or . In the absence of major environmental perturbations, such as urbanization or cropland transformation, species richness and abundance may be buffered and exhibit some resilience in their temporal trajectories. These results suggest that regulatory processes are occurring despite unprecedented environmental change, highlighting the need for community-level assessment of biodiversity trends, as well as extensions of existing theory to address open source pools and shifting environmental conditions.

References

  1. Science. 2011 Nov 4;334(6056):652-5 [PMID: 22053045]
  2. Ecology. 2014 Jun;95(6):1693-700 [PMID: 25039233]
  3. Proc Natl Acad Sci U S A. 1981 Jan;78(1):392-6 [PMID: 6941254]
  4. Ecology. 2016 Aug;97(8):1949-1960 [PMID: 27859190]
  5. Ecology. 2016 Apr;97(4):1082 [PMID: 28792597]
  6. Science. 2014 Apr 18;344(6181):296-9 [PMID: 24744374]
  7. Science. 2014 Jun 6;344(6188):1098-9 [PMID: 24904147]
  8. Oecologia. 2001 Feb;126(3):321-332 [PMID: 28547444]
  9. Proc Natl Acad Sci U S A. 2007 Feb 27;104(9):3273-7 [PMID: 17360637]
  10. Nature. 1997 Sep 11;389(6647):176-80 [PMID: 9296494]
  11. Ecol Lett. 2009 Dec;12(12):1287-97 [PMID: 19845727]
  12. J Anim Ecol. 2006 Jul;75(4):837-51 [PMID: 17009748]
  13. Proc Biol Sci. 2014 Sep 22;281(1791):20141336 [PMID: 25100702]
  14. Nat Commun. 2015 Sep 24;6:8405 [PMID: 26400102]
  15. Science. 1983 Jun 17;220(4603):1275-7 [PMID: 17769369]
  16. Trends Ecol Evol. 2015 Sep;30(9):513-5 [PMID: 26190138]
  17. Trends Ecol Evol. 2015 Feb;30(2):104-13 [PMID: 25542312]
  18. Am Nat. 2015 May;185(5):572-83 [PMID: 25905501]
  19. Philos Trans R Soc Lond B Biol Sci. 2002 Sep 29;357(1425):1153-70 [PMID: 12396508]
  20. Sci Adv. 2016 Oct 26;2(10 ):e1600842 [PMID: 27819044]
  21. Nature. 2016 Feb 25;530(7591):409-12 [PMID: 26911766]
  22. Am Nat. 1998 Mar;151(3):264-76 [PMID: 18811357]
  23. Ecol Lett. 2008 Mar;11(3):235-44 [PMID: 18070098]
  24. Science. 2014 Jun 6;344(6188):1098 [PMID: 24904146]
  25. Am Nat. 2008 Dec;172(6):E257-69 [PMID: 18947326]

MeSH Term

Biodiversity
Ecosystem
Environment
Geography
Markov Chains
Models, Theoretical
Population Dynamics

Word Cloud

Created with Highcharts 10.0.0temporalfluctuationsregulationbiodiversityenvironmentalspeciesrichnessabundanceregulatedevidencetrendsManytheoreticalmodelscommunitydynamicspredicttotalpresentnovelwidespread59plantanimalassemblagesaroundglobemonitoredannuallydecademajorityexhibitedcomparednullhypothesisunconstrainedrandomwalkHoweverlittlestatisticalartifactsdrivencorrelationsaverageannualtemperaturelocal-scalecompensatoryabsencemajorperturbationsurbanizationcroplandtransformationmaybufferedexhibitresiliencetrajectoriesresultssuggestregulatoryprocessesoccurringdespiteunprecedentedchangehighlightingneedcommunity-levelassessmentwellextensionsexistingtheoryaddressopensourcepoolsshiftingconditionsCommunity-level

Similar Articles

Cited By