Two-color bursting oscillations.

Bryan Kelleher, Bogusław Tykalewicz, David Goulding, Nikita Fedorov, Ilya Dubinkin, Thomas Erneux, Evgeny A Viktorov
Author Information
  1. Bryan Kelleher: Department of Physics, University College Cork, Cork, Ireland. bryan.kelleher@ucc.ie.
  2. Bogusław Tykalewicz: Tyndall National Institute, University College Cork, Lee Maltings, Dyke Parade, Cork, Ireland.
  3. David Goulding: Tyndall National Institute, University College Cork, Lee Maltings, Dyke Parade, Cork, Ireland.
  4. Nikita Fedorov: National Research University of Information Technologies, Mechanics and Optics, Saint Petersburg, Russia.
  5. Ilya Dubinkin: National Research University of Information Technologies, Mechanics and Optics, Saint Petersburg, Russia.
  6. Thomas Erneux: Optique Nonlinéaire Théorique, Campus Plaine, CP 231, 1050, Bruxelles, Belgium.
  7. Evgeny A Viktorov: National Research University of Information Technologies, Mechanics and Optics, Saint Petersburg, Russia.

Abstract

Neurons communicate by brief bursts of spikes separated by silent phases and information may be encoded into the burst duration or through the structure of the interspike intervals. Inspired by the importance of bursting activities in neuronal computation, we have investigated the bursting oscillations of an optically injected quantum dot laser. We find experimentally that the laser periodically switches between two distinct operating states with distinct optical frequencies exhibiting either fast oscillatory or nearly steady state evolutions (two-color bursting oscillations). The conditions for their emergence and their control are analyzed by systematic simulations of the laser rate equations. By projecting the bursting solution onto the bifurcation diagram of a fast subsystem, we show how a specific hysteresis phenomenon explains the transitions between active and silent phases. Since size-controlled bursts can contain more information content than single spikes our results open the way to new forms of neuron inspired optical communication.

References

  1. Phys Rev E. 2016 Oct;94(4-1):042219 [PMID: 27841605]
  2. Bull Math Biol. 1995 May;57(3):413-39 [PMID: 7728115]
  3. Opt Express. 2010 Dec 20;18(26):27028-35 [PMID: 21196979]
  4. Opt Lett. 2014 Aug 1;39(15):4607-10 [PMID: 25078240]
  5. Opt Lett. 2016 Aug 1;41(15):3555-8 [PMID: 27472617]
  6. Opt Lett. 2015 Dec 1;40(23):5690-3 [PMID: 26625083]
  7. Sci Rep. 2016 Jan 12;6:19126 [PMID: 26753897]
  8. Phys Rev E Stat Nonlin Soft Matter Phys. 2012 Apr;85(4 Pt 2):046212 [PMID: 22680561]
  9. Sci Rep. 2016 Jan 19;6:19510 [PMID: 26781583]
  10. Phys Rev Lett. 2014 May 9;112(18):183902 [PMID: 24856697]
  11. Phys Rev E Stat Nonlin Soft Matter Phys. 2009 Feb;79(2 Pt 2):026208 [PMID: 19391821]
  12. Opt Lett. 2016 Mar 1;41(5):1034-7 [PMID: 26974109]

Word Cloud

Created with Highcharts 10.0.0burstingoscillationslaserburstsspikessilentphasesinformationdistinctopticalfastNeuronscommunicatebriefseparatedmayencodedburstdurationstructureinterspikeintervalsInspiredimportanceactivitiesneuronalcomputationinvestigatedopticallyinjectedquantumdotfindexperimentallyperiodicallyswitchestwooperatingstatesfrequenciesexhibitingeitheroscillatorynearlysteadystateevolutionstwo-colorconditionsemergencecontrolanalyzedsystematicsimulationsrateequationsprojectingsolutionontobifurcationdiagramsubsystemshowspecifichysteresisphenomenonexplainstransitionsactiveSincesize-controlledcancontaincontentsingleresultsopenwaynewformsneuroninspiredcommunicationTwo-color

Similar Articles

Cited By