Sciatic nerve repair using poly(ε-caprolactone) tubular prosthesis associated with nanoparticles of carbon and graphene.

Kyl Assaf, Claudenete Vieira Leal, Mariana Silveira Derami, Eliana Aparecida de Rezende Duek, Helder Jose Ceragioli, Alexandre Leite Rodrigues de Oliveira
Author Information
  1. Kyl Assaf: Department of Structural and Functional Biology Institute of Biology University of Campinas - UNICAMP Campinas Brazil.
  2. Claudenete Vieira Leal: Department of Materials Engineering Faculty of Mechanical Engineering University of Campinas - UNICAMP Campinas Brazil.
  3. Mariana Silveira Derami: Department of Structural and Functional Biology Institute of Biology University of Campinas - UNICAMP Campinas Brazil.
  4. Eliana Aparecida de Rezende Duek: Department of Materials Engineering Faculty of Mechanical Engineering University of Campinas - UNICAMP Campinas Brazil.
  5. Helder Jose Ceragioli: Faculty of Electric Engineering and Computation (FEEC) University of Campinas - UNICAMP Campinas Brazil.
  6. Alexandre Leite Rodrigues de Oliveira: Department of Structural and Functional Biology Institute of Biology University of Campinas - UNICAMP Campinas Brazil. ORCID

Abstract

INTRODUCTION: Injuries to peripheral nerves generate disconnection between spinal neurons and the target organ. Due to retraction of the nerve stumps, end-to-end neurorrhaphy is usually unfeasible. In such cases, autologous grafts are widely used, nonetheless with some disadvantages, such as mismatching of donor nerve dimensions and formation of painful neuromas at the donor area. Tubulization, using bioresorbable polymers, can potentially replace nerve grafting, although improvements are still necessary. Among promising bioresorbable synthetic polymers, poly(l-lactic acid) (PLLA) and poly(ε-caprolactone) (PCL) are the most studied. carbon nanotubes and graphene sheets have been proposed, however, as adjuvants to improve mechanical and regenerative properties of tubular prostheses. Thus, the present work evaluated nerve tubulization repair following association of PCL with nanoparticles of carbon (NPC) and graphene (NPG).
METHODS: For that, adult Lewis rats were subjected to unilateral Sciatic nerve tubulization and allowed to survive for up to 8 and 12 weeks postsurgery.
RESULTS: Nanocomposites mechanical/chemical evaluation showed that nanoparticles do not alter PCL crystallinity, yet providing reinforcement of polymer matrix. Thus, there was a decrease in the enthalpy of melting when the mixture of PCL + NPC + NPG was used. Nanocomposites displayed positive changes in molecular mobility in the amorphous phase of the polymer. Also, the loss modulus (E") and the glass transition exhibited highest values for PCL + NPC + NPG. Scanning electron microscopy analysis revealed that PCL + NPC + NPG prostheses showed improved cell adhesion as compared to PCL alone. Surgical procedures with PCL + NPC + NPG were facilitated due to improved flexibility of the prosthesis, resulting in better stump positioning accuracy. In turn, a twofold increased number of myelinated axons was found in such repaired nerves. Consistent with that, target muscle atrophy protection has been observed.
CONCLUSION: Overall, the present data show that nanocomposite PCL tubes facilitate nerve repair and result in a better regenerative outcome, what may, in turn, represent a new alternative to pure PCL or PLLA prostheses.

Keywords

References

  1. BMC Neurosci. 2011 Jul 15;12:68 [PMID: 21756368]
  2. J Hand Surg Am. 1995 Jul;20(4):557-64 [PMID: 7594278]
  3. Scand J Plast Reconstr Surg Hand Surg. 1991;25(1):79-82 [PMID: 2052913]
  4. J Mater Sci Mater Med. 2009 May;20(5):1181-92 [PMID: 19132511]
  5. Adv Mater. 2013 Oct 4;25(37):5153-76 [PMID: 23813859]
  6. Tissue Eng Part A. 2008 May;14(5):595-606 [PMID: 18399734]
  7. Biomaterials. 2006 Jun;27(18):3413-31 [PMID: 16504284]
  8. Neurosurg Clin N Am. 2001 Apr;12(2):341-52 [PMID: 11525212]
  9. Adv Mater. 2010 Sep 15;22(35):3906-24 [PMID: 20706983]
  10. Neurosurg Focus. 2009 Feb;26(2):E5 [PMID: 19435445]
  11. Biomaterials. 2011 Dec;32(35):9374-82 [PMID: 21903256]
  12. J Hand Surg Br. 2004 Apr;29(2):100-7 [PMID: 15010152]
  13. Exp Neurol. 1999 Aug;158(2):338-50 [PMID: 10415141]
  14. Cell. 2015 Aug 27;162(5):1127-39 [PMID: 26279190]
  15. Semin Surg Oncol. 2000 Oct-Nov;19(3):312-8 [PMID: 11135488]
  16. Tissue Eng Part A. 2011 Feb;17(3-4):475-86 [PMID: 20819000]
  17. Tissue Eng Part B Rev. 2008 Mar;14(1):61-86 [PMID: 18454635]
  18. J Nanobiotechnology. 2015 Oct 30;13:78 [PMID: 26518450]
  19. Brain Res. 2004 Nov 19;1027(1-2):18-29 [PMID: 15494153]
  20. Hand (N Y). 2009 Jun;4(2):180-6 [PMID: 19137378]
  21. J Anat. 1984 Aug;139 ( Pt 1):59-66 [PMID: 6381444]
  22. J Hand Surg Br. 1994 Jun;19(3):273-6 [PMID: 8077807]
  23. J Cell Biol. 2013 Sep 16;202(6):837-48 [PMID: 24043699]
  24. Scand J Plast Reconstr Surg Hand Surg. 2001 Mar;35(1):29-34 [PMID: 11291347]
  25. J Hand Surg Am. 1997 Jan;22(1):99-106 [PMID: 9018621]
  26. Muscle Nerve. 2004 Jul;30(1):77-86 [PMID: 15221882]
  27. J Biomed Mater Res A. 2010 Jun 15;93(4):1470-81 [PMID: 19967758]
  28. Annu Rev Biomed Eng. 2010 Aug 15;12:203-31 [PMID: 20438370]
  29. J Mol Neurosci. 2000 Jun;14(3):175-82 [PMID: 10984193]
  30. Exp Neurol. 2006 Apr;198(2):457-68 [PMID: 16487971]
  31. Acta Biomater. 2011 Mar;7(3):944-53 [PMID: 20965280]
  32. J Cell Sci. 1989 Jan;92 ( Pt 1):111-21 [PMID: 2777911]
  33. Nanomedicine. 2011 Feb;7(1):50-9 [PMID: 20692373]
  34. J Anat. 1984 Aug;139 ( Pt 1):45-58 [PMID: 6381443]
  35. Nanotechnology. 2011 Jul 1;22(26):265103 [PMID: 21576788]
  36. J Biomed Sci. 2009 Nov 25;16:108 [PMID: 19939265]
  37. Int Rev Neurobiol. 2009;87:27-46 [PMID: 19682632]
  38. Brain Behav. 2017 Jun 30;7(8):e00755 [PMID: 28828216]
  39. Biomaterials. 1999 Jun;20(12):1109-15 [PMID: 10382826]

MeSH Term

Animals
Basophil Degranulation Test
Biocompatible Materials
Graphite
Muscular Atrophy
Nanotubes, Carbon
Neurosurgical Procedures
Polyesters
Postoperative Complications
Prosthesis Design
Prosthesis Implantation
Rats
Rats, Inbred Lew
Sciatic Nerve

Chemicals

Biocompatible Materials
Nanotubes, Carbon
Polyesters
polycaprolactone
Graphite

Word Cloud

Created with Highcharts 10.0.0nervePCLgraphenePCL + NPC + NPGnervespolyprosthesestubulizationrepairnanoparticlescarbonperipheraltargetuseddonorusingbioresorbablepolymersPLLAε-caprolactonenanotubesregenerativetubularThuspresentNanocompositesshowedpolymerimprovedprosthesisbetterturnINTRODUCTION:InjuriesgeneratedisconnectionspinalneuronsorganDueretractionstumpsend-to-endneurorrhaphyusuallyunfeasiblecasesautologousgraftswidelynonethelessdisadvantagesmismatchingdimensionsformationpainfulneuromasareaTubulizationcanpotentiallyreplacegraftingalthoughimprovementsstillnecessaryAmongpromisingsyntheticl-lacticacidstudiedCarbonsheetsproposedhoweveradjuvantsimprovemechanicalpropertiesworkevaluatedfollowingassociationNPCNPGMETHODS:adultLewisratssubjectedunilateralsciaticallowedsurvive812 weekspostsurgeryRESULTS:mechanical/chemicalevaluationaltercrystallinityyetprovidingreinforcementmatrixdecreaseenthalpymeltingmixturedisplayedpositivechangesmolecularmobilityamorphousphaseAlsolossmodulusE"glasstransitionexhibitedhighestvaluesScanningelectronmicroscopyanalysisrevealedcelladhesioncomparedaloneSurgicalproceduresfacilitateddueflexibilityresultingstumppositioningaccuracytwofoldincreasednumbermyelinatedaxonsfoundrepairedConsistentmuscleatrophyprotectionobservedCONCLUSION:OveralldatashownanocompositetubesfacilitateresultoutcomemayrepresentnewalternativepureSciaticassociated

Similar Articles

Cited By (11)