Development of a strategy and computational application to select candidate protein analogues with reduced HLA binding and immunogenicity.

Sandeep Kumar Dhanda, Alba Grifoni, John Pham, Kerrie Vaughan, John Sidney, Bjoern Peters, Alessandro Sette
Author Information
  1. Sandeep Kumar Dhanda: Division of Vaccine Discovery, La Jolla Institute for Allergy and Immunology, La Jolla, CA, USA. ORCID
  2. Alba Grifoni: Division of Vaccine Discovery, La Jolla Institute for Allergy and Immunology, La Jolla, CA, USA. ORCID
  3. John Pham: Division of Vaccine Discovery, La Jolla Institute for Allergy and Immunology, La Jolla, CA, USA.
  4. Kerrie Vaughan: Division of Vaccine Discovery, La Jolla Institute for Allergy and Immunology, La Jolla, CA, USA.
  5. John Sidney: Division of Vaccine Discovery, La Jolla Institute for Allergy and Immunology, La Jolla, CA, USA.
  6. Bjoern Peters: Division of Vaccine Discovery, La Jolla Institute for Allergy and Immunology, La Jolla, CA, USA.
  7. Alessandro Sette: Division of Vaccine Discovery, La Jolla Institute for Allergy and Immunology, La Jolla, CA, USA.

Abstract

Unwanted immune responses against protein therapeutics can reduce efficacy or lead to adverse reactions. T-cell responses are key in the development of such responses, and are directed against immunodominant regions within the protein sequence, often associated with binding to several allelic variants of HLA class II molecules (promiscuous binders). Herein, we report a novel computational strategy to predict 'de-immunized' peptides, based on previous studies of erythropoietin protein immunogenicity. This algorithm (or method) first predicts promiscuous binding regions within the target protein sequence and then identifies residue substitutions predicted to reduce HLA binding. Further, this method anticipates the effect of any given substitution on flanking peptides, thereby circumventing the creation of nascent HLA-binding regions. As a proof-of-principle, the algorithm was applied to Vatreptacog α, an engineered Factor VII molecule associated with unintended immunogenicity. The algorithm correctly predicted the two immunogenic peptides containing the engineered residues. As a further validation, we selected and evaluated the immunogenicity of seven substitutions predicted to simultaneously reduce HLA binding for both peptides, five control substitutions with no predicted reduction in HLA-binding capacity, and additional flanking region controls. In vitro immunogenicity was detected in 21·4% of the cultures of peptides predicted to have reduced HLA binding and 11·4% of the flanking regions, compared with 46% for the cultures of the peptides predicted to be immunogenic. This method has been implemented as an interactive application, freely available online at http://tools.iedb.org/deimmunization/.

Keywords

References

  1. J Exp Med. 1994 Jan 1;179(1):279-90 [PMID: 7505801]
  2. Proc Natl Acad Sci U S A. 2011 Apr 5;108(14):5742-7 [PMID: 21436054]
  3. J Immunol. 2010 Jul 15;185(2):943-55 [PMID: 20554959]
  4. J Immunol. 1993 Dec 15;151(12):6815-21 [PMID: 7505016]
  5. Proc Natl Acad Sci U S A. 2014 Jun 10;111(23):8577-82 [PMID: 24843166]
  6. J Immunol. 2005 Mar 15;174(6):3187-96 [PMID: 15749848]
  7. J Immunol. 1993 Jan 1;150(1):1-7 [PMID: 8417115]
  8. J Gen Virol. 2002 Dec;83(Pt 12):3023-33 [PMID: 12466479]
  9. Clin Dev Immunol. 2013;2013:467852 [PMID: 24222776]
  10. Methods Mol Biol. 2009;525:405-23, xiv [PMID: 19252848]
  11. Sci Transl Med. 2017 Jan 11;9(372):null [PMID: 28077675]
  12. Proc Natl Acad Sci U S A. 2014 Jun 10;111(23):8571-6 [PMID: 24799704]
  13. J Immunol. 1991 Oct 15;147(8):2663-9 [PMID: 1717570]
  14. Allergy. 2015 Jan;70(1):49-58 [PMID: 25236500]
  15. Toxins (Basel). 2015 Oct 10;7(10):4067-82 [PMID: 26473923]
  16. J Immunol. 2007 Jun 15;178(12):7890-901 [PMID: 17548627]
  17. Curr Med Chem. 2002 Dec;9(24):2191-9 [PMID: 12470241]
  18. Pathol Oncol Res. 2015 Sep;21(4):909-20 [PMID: 25740072]
  19. Immunogenetics. 2011 Jun;63(6):325-35 [PMID: 21305276]
  20. Nucleic Acids Res. 2015 Jan;43(Database issue):D405-12 [PMID: 25300482]
  21. Cell Mol Life Sci. 2014 Dec;71(24):4869-80 [PMID: 24880662]
  22. Biotechnol Bioeng. 2015 Jul;112(7):1306-18 [PMID: 25655032]
  23. Chem Biol. 2015 May 21;22(5):629-39 [PMID: 26000749]
  24. Mol Cancer Ther. 2010 Jun;9(6):1872-83 [PMID: 20530709]
  25. Oncotarget. 2016 May 24;7(21):29916-26 [PMID: 27167198]
  26. Cell Immunol. 2017 Mar;313:59-66 [PMID: 28087047]
  27. J Immunol. 1991 Apr 1;146(7):2331-40 [PMID: 1706393]
  28. APMIS. 2017 Jun;125(6):544-552 [PMID: 28418077]
  29. Biochem Biophys Res Commun. 2010 May 28;396(2):231-7 [PMID: 20399745]
  30. Hum Mutat. 2016 May;37(5):439-46 [PMID: 26842889]
  31. Methods Mol Biol. 2017;1529:375-398 [PMID: 27914063]
  32. Immunology. 2010 Jul;130(3):319-28 [PMID: 20408898]
  33. Bioinformatics. 2005 Oct 15;21(20):3940-1 [PMID: 16096348]
  34. Immunogenetics. 2013 May;65(5):357-70 [PMID: 23392739]
  35. J Infect Dis. 2016 Oct 1;214(7):1117-24 [PMID: 27443615]
  36. J Immunol. 2012 May 15;188(10):5020-31 [PMID: 22504645]
  37. Br J Cancer. 2009 Oct 6;101(7):1114-23 [PMID: 19755995]
  38. J Immunol Methods. 2015 Jul;422:28-34 [PMID: 25862607]
  39. Immunome Res. 2010 Nov 03;6 Suppl 2:S3 [PMID: 21067545]
  40. Clin Immunol. 2017 Mar;176:31-41 [PMID: 28089609]
  41. J Immunol. 1994 Dec 15;153(12):5586-92 [PMID: 7527444]
  42. Biologicals. 2015 Nov;43(6):479-91 [PMID: 26321653]
  43. PLoS Comput Biol. 2008 Apr 04;4(4):e1000048 [PMID: 18389056]
  44. Mol Immunol. 2014 Oct;61(2):191-203 [PMID: 25062833]
  45. Proc Natl Acad Sci U S A. 2011 Jan 25;108(4):1272-7 [PMID: 21209329]
  46. Hum Vaccin Immunother. 2014;10(12):3570-5 [PMID: 25483703]
  47. J Thromb Haemost. 2014 Aug;12(8):1244-53 [PMID: 24931322]
  48. J Exp Med. 2002 Mar 4;195(5):571-81 [PMID: 11877480]
  49. J Immunol. 2010 Oct 1;185(7):4189-98 [PMID: 20810981]
  50. Front Immunol. 2017 Mar 14;8:278 [PMID: 28352270]
  51. Proc Natl Acad Sci U S A. 2012 Dec 18;109(51):E3597-603 [PMID: 23213206]
  52. Proc Natl Acad Sci U S A. 2013 Feb 26;110(9):3459-64 [PMID: 23401558]
  53. J Immunol. 2015 Jun 15;194(12 ):6164-6176 [PMID: 25948811]
  54. J Immunol. 1998 Apr 1;160(7):3363-73 [PMID: 9531296]
  55. J Thromb Haemost. 2012 Jan;10 (1):81-9 [PMID: 22470921]
  56. Brief Bioinform. 2017 May 1;18(3):467-478 [PMID: 27016393]
  57. Clin Exp Allergy. 2015 Oct;45(10 ):1601-12 [PMID: 25652035]
  58. Proc Natl Acad Sci U S A. 2008 Aug 12;105(32):11311-6 [PMID: 18678888]
  59. J Thromb Haemost. 2015 Nov;13(11):1989-98 [PMID: 26362483]
  60. Cell Immunol. 2016 Mar;301:12-7 [PMID: 26566286]
  61. J Immunol. 2012 Aug 15;189(4):1800-11 [PMID: 22786768]
  62. J Immunol. 2010 Mar 1;184(5):2492-503 [PMID: 20139279]
  63. Expert Rev Clin Pharmacol. 2013 Nov;6(6):651-62 [PMID: 24164613]
  64. Nucleic Acids Res. 2015 Jan;43(Database issue):D784-8 [PMID: 25414323]
  65. IDrugs. 2009 Apr;12(4):233-7 [PMID: 19350467]
  66. Nature. 1994 Mar 17;368(6468):215-21 [PMID: 8145819]
  67. Clin Immunol. 2012 Mar;142(3):320-31 [PMID: 22222093]
  68. Clin Immunol. 2013 Dec;149(3):534-55 [PMID: 24263283]
  69. Sci Rep. 2017 Apr 28;7(1):1283 [PMID: 28455520]
  70. Nucleic Acids Res. 2008 Jul 1;36(Web Server issue):W513-8 [PMID: 18515843]
  71. J Immunol. 2004 Jun 1;172(11):6658-65 [PMID: 15153481]

Grants

  1. HHSN272201200010C/NIAID NIH HHS

MeSH Term

Alleles
Amino Acid Sequence
Amino Acid Substitution
Carrier Proteins
Computer Simulation
Epitope Mapping
Epitopes, T-Lymphocyte
Erythropoietin
HLA Antigens
Humans
Immunodominant Epitopes
Protein Binding
Reproducibility of Results
Software
User-Computer Interface

Chemicals

Carrier Proteins
Epitopes, T-Lymphocyte
HLA Antigens
Immunodominant Epitopes
Erythropoietin

Word Cloud

Created with Highcharts 10.0.0bindingpeptidespredictedproteinHLAimmunogenicityregionsresponsesreducealgorithmmethodsubstitutionsflankingwithinsequenceassociatedpromiscuouscomputationalstrategyHLA-bindingengineeredimmunogenicculturesreducedapplicationUnwantedimmunetherapeuticscanefficacyleadadversereactionsT-cellkeydevelopmentdirectedimmunodominantoftenseveralallelicvariantsclassIImoleculesbindersHereinreportnovelpredict'de-immunized'basedpreviousstudieserythropoietinfirstpredictstargetidentifiesresidueanticipateseffectgivensubstitutiontherebycircumventingcreationnascentproof-of-principleappliedVatreptacogαFactorVIImoleculeunintendedcorrectlytwocontainingresiduesvalidationselectedevaluatedsevensimultaneouslyfivecontrolreductioncapacityadditionalregioncontrolsvitrodetected21·4%11·4%compared46%implementedinteractivefreelyavailableonlinehttp://toolsiedborg/deimmunization/DevelopmentselectcandidateanaloguesMHC/HLATcellantigen/peptides/epitopesbioinformaticsregulation/suppression

Similar Articles

Cited By