Extended genomes: symbiosis and evolution.

Gregory D D Hurst
Author Information
  1. Gregory D D Hurst: Institute of Integrative Biology, University of Liverpool, Liverpool L69 7ZB, UK. ORCID

Abstract

Many aspects of an individual's biology derive from its interaction with symbiotic microbes, which further define many aspects of the ecology and evolution of the host species. The centrality of microbes in the function of individual organisms has given rise to the concept of the holobiont-that an individual's biology is best understood as a composite of the 'host organism' and symbionts within. This concept has been further elaborated to posit the holobiont as a unit of selection. In this review, I critically examine whether it is useful to consider holobionts as a unit of selection. I argue that microbial heredity-the direct passage of microbes from parent to offspring-is a key factor determining the degree to which the holobiont can usefully be considered a level of selection. Where direct vertical transmission (VT) is common, microbes form part of extended genomes whose dynamics can be modelled with simple population genetics, but that nevertheless have subtle quantitative distinctions from the classic mutation/selection model for nuclear genes. Without direct VT, the correlation between microbial fitness and host individual fitness erodes, and microbe fitness becomes associated with host survival only (rather than reproduction). Furthermore, turnover of microbes within a host may lessen associations between microbial fitness with host survival, and in polymicrobial communities, microbial fitness may derive largely from the ability to outcompete other microbes, to avoid host immune clearance and to minimize mortality through phage infection. These competing selection pressures make holobiont fitness a very minor consideration in determining symbiont evolution. Nevertheless, the importance of non-heritable microbes in organismal function is undoubted-and as such the evolutionary and ecological processes giving rise to variation and evolution of the microbes within and between host individuals represent a key research area in biology.

Keywords

References

  1. Bioessays. 2016 Jan;38(1):100-8 [PMID: 26568407]
  2. Science. 2015 Sep 11;349(6253):1172-3 [PMID: 26359393]
  3. Appl Environ Microbiol. 2009 Jun;75(11):3513-21 [PMID: 19363076]
  4. mBio. 2016 Mar 31;7(2):e02099 [PMID: 27034285]
  5. mBio. 2013 Mar 05;4(2): [PMID: 23462112]
  6. Science. 2011 Apr 8;332(6026):185-6 [PMID: 21474745]
  7. Trends Ecol Evol. 2012 Apr;27(4):226-32 [PMID: 22104387]
  8. Science. 2013 Jul 5;341(6141):1237439 [PMID: 23828941]
  9. Proc Natl Acad Sci U S A. 2014 May 20;111(20):7433-7 [PMID: 24799707]
  10. Heredity (Edinb). 2017 Jan;118(1):10-20 [PMID: 27703153]
  11. Proc Biol Sci. 2008 Feb 7;275(1632):293-9 [PMID: 18029301]
  12. Evolution. 2013 Apr;67(4):934-45 [PMID: 23550746]
  13. PLoS Pathog. 2016 Jun 20;12(6):e1005629 [PMID: 27322651]
  14. Proc Biol Sci. 2012 Oct 7;279(1744):3889-98 [PMID: 22859592]
  15. PLoS Biol. 2016 Nov 18;14(11):e2000225 [PMID: 27861590]
  16. Ecol Lett. 2010 Feb;13(2):223-34 [PMID: 20015249]
  17. PLoS Genet. 2014 Mar 06;10(3):e1004182 [PMID: 24603313]
  18. Mol Ecol. 2015 Mar;24(5):1135-49 [PMID: 25683348]
  19. Mol Ecol. 2010 May;19(9):1940-52 [PMID: 20529071]
  20. PLoS One. 2013 Nov 28;8(11):e80307 [PMID: 24312210]
  21. Proc Natl Acad Sci U S A. 2010 Jun 29;107(26):11971-5 [PMID: 20566857]
  22. Curr Biol. 2007 May 1;17(9):773-7 [PMID: 17412585]
  23. PLoS Biol. 2006 Oct;4(10):e337 [PMID: 17032065]
  24. BMC Biol. 2013 Apr 15;11:45 [PMID: 23587344]
  25. Appl Environ Microbiol. 2007 Jan;73(2):622-9 [PMID: 17122394]
  26. Symbiosis. 1991;11:93-101 [PMID: 11538111]
  27. mBio. 2016 Apr 21;7(2):e00135-16 [PMID: 27103626]
  28. Appl Environ Microbiol. 1995 Jan;61(1):1-7 [PMID: 16534896]
  29. Nat Commun. 2015 Nov 30;6:8945 [PMID: 26615893]
  30. Mol Ecol. 2003 Apr;12(4):1061-75 [PMID: 12753224]
  31. J Exp Biol. 2001 Jan;204(Pt 2):349-58 [PMID: 11136620]
  32. Science. 2010 Jul 9;329(5988):212-5 [PMID: 20616278]
  33. ISME J. 2016 Aug;10(8):1915-24 [PMID: 26978164]
  34. Proc Natl Acad Sci U S A. 2005 Sep 6;102(36):12795-800 [PMID: 16120675]
  35. Front Microbiol. 2014 Feb 24;5:46 [PMID: 24605109]
  36. mBio. 2016 Mar 31;7(2):e01395 [PMID: 27034283]
  37. PLoS Biol. 2013;11(8):e1001631 [PMID: 23976878]
  38. PLoS Pathog. 2009 Nov;5(11):e1000656 [PMID: 19911047]
  39. Proc Biol Sci. 2009 Mar 7;276(1658):987-91 [PMID: 19129128]
  40. Am Nat. 2011 Sep;178(3):333-42 [PMID: 21828990]
  41. J Theor Biol. 1991 Mar 7;149(1):63-74 [PMID: 1881147]
  42. PLoS Biol. 2015 Dec 04;13(12):e1002311 [PMID: 26636661]
  43. Cell. 2014 Nov 6;159(4):789-99 [PMID: 25417156]
  44. Cold Spring Harb Perspect Biol. 2015 May 01;7(5): [PMID: 25934011]
  45. Nature. 2005 Oct 6;437(7060):884-8 [PMID: 16208371]
  46. Ann N Y Acad Sci. 1975;266:173-94 [PMID: 829470]
  47. Proc Biol Sci. 2009 Aug 7;276(1668):2805-11 [PMID: 19419989]
  48. Appl Environ Microbiol. 2008 Dec;74(24):7694-708 [PMID: 18820053]
  49. FEMS Microbiol Rev. 2008 Aug;32(5):723-35 [PMID: 18549407]
  50. Science. 2013 Aug 9;341(6146):667-9 [PMID: 23868918]
  51. Fungal Genet Biol. 2001 Jul;33(2):69-82 [PMID: 11456460]
  52. Insect Sci. 2014 Jun;21(3):251-64 [PMID: 24167113]
  53. J Invertebr Pathol. 1979 Sep;34(2):152-7 [PMID: 536610]
  54. J Invertebr Pathol. 1965 Jun;7(2):161-6 [PMID: 4378495]
  55. Curr Biol. 2016 Jan 25;26(2):207-211 [PMID: 26748854]
  56. Appl Environ Microbiol. 2015 Aug 15;81(16):5375-86 [PMID: 26025907]
  57. Proc Natl Acad Sci U S A. 2015 Aug 18;112(33):10169-76 [PMID: 25713367]
  58. Evolution. 2012 Feb;66(2):349-62 [PMID: 22276533]
  59. PLoS Biol. 2014 Feb 04;12(2):e1001783 [PMID: 24504482]
  60. BMC Biol. 2008 Jun 24;6:27 [PMID: 18577218]
  61. Philos Trans R Soc Lond B Biol Sci. 2010 Jun 27;365(1548):1899-905 [PMID: 20478885]
  62. Nature. 2006 May 25;441(7092):509-12 [PMID: 16724067]
  63. Genome Biol Evol. 2015 Oct 09;7(10):2871-84 [PMID: 26454017]
  64. Proc Natl Acad Sci U S A. 1998 Feb 17;95(4):1818-22 [PMID: 9465100]
  65. Environ Microbiol. 2012 Oct;14(10):2757-69 [PMID: 22548823]
  66. Nat Rev Microbiol. 2010 Mar;8(3):207-17 [PMID: 20157339]
  67. PLoS Biol. 2007 May;5(5):e96 [PMID: 17425405]
  68. Theor Popul Biol. 1978 Dec;14(3):471-97 [PMID: 751271]
  69. Appl Environ Microbiol. 2007 Apr;73(7):2067-78 [PMID: 17277226]
  70. Nat Immunol. 2013 Jul;14(7):668-75 [PMID: 23778794]
  71. BMC Evol Biol. 2007 Nov 29;7:238 [PMID: 18047670]
  72. Annu Rev Genet. 2008;42:165-90 [PMID: 18983256]
  73. Proc Natl Acad Sci U S A. 2012 May 15;109(20):E1230-7 [PMID: 22517738]
  74. PLoS Biol. 2016 Aug 19;14(8):e1002533 [PMID: 27541692]
  75. ISME J. 2011 Feb;5(2):220-30 [PMID: 20686513]
  76. Appl Environ Microbiol. 2003 Apr;69(4):2058-64 [PMID: 12676683]
  77. Evolution. 1986 Jul;40(4):692-701 [PMID: 28556160]
  78. Science. 1994 Dec 9;266(5191):1691-4 [PMID: 17775630]
  79. Proc Natl Acad Sci U S A. 2013 Sep 24;110(39):E3730-8 [PMID: 24003149]
  80. Science. 2016 Jul 22;353(6297):380-2 [PMID: 27463672]
  81. Nature. 2011 May 12;473(7346):174-80 [PMID: 21508958]
  82. Heredity (Edinb). 2015 Jun;114(6):539-43 [PMID: 25649504]
  83. PLoS Biol. 2015 Aug 18;13(8):e1002226 [PMID: 26284777]
  84. mSystems. 2016 Mar 29;1(2): [PMID: 27822520]
  85. Ecol Evol. 2016 Mar 16;6(9):2679-87 [PMID: 27066241]
  86. Science. 2011 Apr 8;332(6026):254-6 [PMID: 21474763]
  87. Proc Natl Acad Sci U S A. 2013 Feb 26;110(9):3229-36 [PMID: 23391737]
  88. Insect Mol Biol. 2003 Feb;12(1):93-7 [PMID: 12542640]
  89. Biol Lett. 2007 Feb 22;3(1):23-5 [PMID: 17443956]
  90. Heredity (Edinb). 2001 Oct;87(Pt 4):435-40 [PMID: 11737291]
  91. Ecol Lett. 2014 Oct;17(10):1238-46 [PMID: 25040855]
  92. PLoS One. 2010 Aug 13;5(8):e12149 [PMID: 20730104]
  93. Science. 2007 Jan 26;315(5811):513-5 [PMID: 17255511]
  94. Appl Environ Microbiol. 2015 Nov 13;82(2):671-9 [PMID: 26567306]

Word Cloud

Created with Highcharts 10.0.0microbeshostfitnessevolutionselectionmicrobialbiologywithinholobiontdirectaspectsindividual'sderivefunctionindividualriseconceptunitkeydeterminingcanVTextendedsurvivalmayevolutionarysymbiosisManyinteractionsymbioticdefinemanyecologyspeciescentralityorganismsgivenholobiont-thatbestunderstoodcomposite'hostorganism'symbiontselaboratedpositreviewcriticallyexaminewhetherusefulconsiderholobiontsargueheredity-thepassageparentoffspring-isfactordegreeusefullyconsideredlevelverticaltransmissioncommonformpartgenomeswhosedynamicsmodelledsimplepopulationgeneticsneverthelesssubtlequantitativedistinctionsclassicmutation/selectionmodelnucleargenesWithoutcorrelationerodesmicrobebecomesassociatedratherreproductionFurthermoreturnoverlessenassociationspolymicrobialcommunitieslargelyabilityoutcompeteavoidimmuneclearanceminimizemortalityphageinfectioncompetingpressuresmakeminorconsiderationsymbiontNeverthelessimportancenon-heritableorganismalundoubted-andecologicalprocessesgivingvariationindividualsrepresentresearchareaExtendedgenomes:synthesisheredity

Similar Articles

Cited By (30)