Synergistic rhizosphere degradation of γ-hexachlorocyclohexane (lindane) through the combinatorial plant-fungal action.

Michael Dare Asemoloye, Rafiq Ahmad, Segun Gbolagade Jonathan
Author Information
  1. Michael Dare Asemoloye: Food and Environmental Mycology/Biotechnology Unit, Department of Botany, University of Ibadan, Ibadan, Nigeria. ORCID
  2. Rafiq Ahmad: Department of Environmental Sciences, COMSATS Institute of Information Technology, Abbottabad, Pakistan.
  3. Segun Gbolagade Jonathan: Food and Environmental Mycology/Biotechnology Unit, Department of Botany, University of Ibadan, Ibadan, Nigeria.

Abstract

Fungi are usually involved in degradation/deterioration of many anthropogenic wastes due to their verse enzyme secretions and adaptive capabilities. In this study, five dominant fungal strains were isolated from an aged lindane polluted site, they were all mixed (100 mg each) together with pent mushroom compost (SMC) and applied to lindane polluted soil (5 kg) at 10, 20, 30, 40% and control 0% (soil with no treatment), these were used to grow M. maximus Jacq for 3 months. To establish lindane degradation, deductions such as Degradation rate (K1), Half-life (t1/2) and Degradation efficiency (DE) were made based on the analyzed lindane concentrations before and after the experiment. We also tested the presence and expressions of phosphoesterases (mpd and opd-A) and catechol 1,2-dioxygenases (efk2 and efk4) genes in the strains. The stains were identified as Aspergillus niger (KY693970); Talaromyces atroroseus (KY488464), Talaromyces purpurogenus (KY488468), Yarrowia lipolytica (KY488469) and Aspergillus flavus (KY693973) through morphological and molecular methods. Combined rhizospheric action of M. maximus and fungi speed up lindane degradation rate, initially detected lindane concentration of 45 mg/kg was reduced to 11.26, 9.34 and 11.23 mg/kg in 20, 30 and 40% treatments respectively making 79.76, 85.93 and 88.67% degradation efficiencies. K1 of 1.29 was recorded in control while higher K1 of 1.60, 1.96 and 2.18 /day were recorded in 20, 30 and 40% treatments respectively. The best t1/2 of 0.32 and 0.35 /day were recorded in 40 and 30% compared to control (0.54 /day). All the strains were also affirmed to possess the tested genes; opd was overexpressed in all the strains except KY693973 while mpd was overexpressed in KY693970, KY488464 but moderately expressed in KY488468, KY488469 and KY693973. However, efk genes were under-expressed in most of the strains except KY488469 and KY693973 which showed moderate expression of efk4. This work suggests that the synergistic association of the identified rhizospheric fungi and M. maximus roots could be used to remove lindane in soil at a limited time period and this combination could be used at large scale.

References

  1. J Ind Microbiol Biotechnol. 1999 Oct;23(4-5):380-390 [PMID: 11423959]
  2. J Bacteriol. 2002 Sep;184(17):4672-80 [PMID: 12169590]
  3. J Bacteriol. 1998 Mar;180(6):1354-9 [PMID: 9515900]
  4. World J Microbiol Biotechnol. 2014 Mar;30(3):999-1009 [PMID: 24132496]
  5. Environ Pollut. 2008 Sep;155(2):350-8 [PMID: 18158202]
  6. Biosci Biotechnol Biochem. 2006 Apr;70(4):1029-32 [PMID: 16636477]
  7. Environ Sci Pollut Res Int. 2008 Oct;15(7):554-64 [PMID: 18923860]
  8. Sci Total Environ. 2014 Apr 1;476-477:434-9 [PMID: 24486498]
  9. J Bacteriol. 1999 Sep;181(17):5409-13 [PMID: 10464214]
  10. PLoS One. 2014 Apr 10;9(4):e94177 [PMID: 24721933]
  11. J Bacteriol. 2004 Apr;186(8):2225-35 [PMID: 15060023]
  12. Environ Int. 2001 Apr;26(4):231-6 [PMID: 11341290]
  13. J Bacteriol. 1999 Nov;181(21):6712-9 [PMID: 10542173]
  14. Sci Total Environ. 2000 Jun 1;254(2-3):93-234 [PMID: 10885446]
  15. PLoS One. 2013 Oct 10;8(10):e77170 [PMID: 24130848]
  16. Biodegradation. 2005 Aug;16(4):363-92 [PMID: 15865341]
  17. J Bacteriol. 2005 Feb;187(3):847-53 [PMID: 15659662]
  18. Bioinformatics. 2006 Jul 1;22(13):1658-9 [PMID: 16731699]
  19. Environ Pollut. 1994;85(1):15-33 [PMID: 15091681]
  20. Environ Health Perspect. 2008 Mar;116(3):297-302 [PMID: 18335094]
  21. Chemosphere. 2008 May;72(1):79-86 [PMID: 18329069]
  22. Crit Rev Microbiol. 1994;20(1):57-78 [PMID: 7514416]
  23. Appl Environ Microbiol. 1997 Sep;63(9):3707-10 [PMID: 9293022]
  24. Appl Microbiol Biotechnol. 2006 Jul;71(4):563-7 [PMID: 16249877]
  25. Z Naturforsch C J Biosci. 2008 Jan-Feb;63(1-2):133-8 [PMID: 18386502]
  26. Environ Microbiol. 2005 Sep;7(9):1329-38 [PMID: 16104856]
  27. FEMS Microbiol Lett. 2007 Apr;269(1):110-6 [PMID: 17241244]
  28. Sci Total Environ. 2005 Oct 15;349(1-3):1-44 [PMID: 16005495]
  29. J Hazard Mater. 2007 Oct 1;149(1):18-25 [PMID: 17502125]
  30. FEMS Microbiol Lett. 2006 Apr;257(2):243-52 [PMID: 16553860]
  31. Appl Microbiol Biotechnol. 2007 Sep;76(4):741-52 [PMID: 17634937]
  32. Environ Sci Technol. 2003 Aug 15;37(16):3493-8 [PMID: 12953857]
  33. Environ Microbiol. 2006 Jan;8(1):60-8 [PMID: 16343322]
  34. Trends Biotechnol. 2006 Mar;24(3):121-30 [PMID: 16473421]
  35. PLoS One. 2012;7(6):e38550 [PMID: 22701662]
  36. Appl Environ Microbiol. 2002 Dec;68(12):6021-8 [PMID: 12450824]
  37. Environ Sci Technol. 2004 Feb 15;38(4):965-75 [PMID: 14998006]
  38. Appl Environ Microbiol. 1995 Jun;61(6):2358-64 [PMID: 7793956]
  39. Bioresour Technol. 2003 May;88(1):41-6 [PMID: 12573562]
  40. Appl Environ Microbiol. 2002 Apr;68(4):1803-7 [PMID: 11916699]
  41. PLoS One. 2015 Apr 29;10(4):e0122378 [PMID: 25923203]
  42. Chemosphere. 2007 Jun;68(5):864-70 [PMID: 17376504]
  43. J Appl Microbiol. 2007 Jun;102(6):1468-78 [PMID: 17578411]
  44. Scientifica (Cairo). 2016;2016:4602036 [PMID: 27092289]
  45. Environ Monit Assess. 1996 May;40(3):279-88 [PMID: 24198158]
  46. PLoS One. 2013 Aug 15;8(8):e69386 [PMID: 23967057]
  47. J Bacteriol. 1993 Oct;175(20):6403-10 [PMID: 7691794]
  48. Chemosphere. 2005 Oct;61(4):528-36 [PMID: 16202806]
  49. Appl Environ Microbiol. 2001 May;67(5):2270-5 [PMID: 11319111]
  50. Environ Monit Assess. 2002 Jun;76(2):185-93 [PMID: 12108591]
  51. Indian J Environ Health. 2001 Oct;43(4):190-3 [PMID: 12395526]
  52. Environ Int. 2007 Nov;33(8):1107-22 [PMID: 17765971]
  53. PLoS One. 2012;7(7):e41305 [PMID: 22815990]
  54. J Bacteriol. 1991 Nov;173(21):6811-9 [PMID: 1718942]
  55. J Environ Sci Health B. 2004 Jan;39(1):101-14 [PMID: 15022744]

MeSH Term

Aspergillus
Biodegradation, Environmental
Fungi
Hexachlorocyclohexane
Plant Roots
Rhizosphere
Soil Microbiology
Soil Pollutants
Talaromyces
Yarrowia

Chemicals

Soil Pollutants
Hexachlorocyclohexane

Word Cloud

Created with Highcharts 10.0.0lindanestrainsdegradation1KY693973soil203040%controlusedMmaximusK1genesKY488469recorded/day0pollutedDegradationratet1/2alsotestedmpdefk4identifiedAspergillusKY693970TalaromycesKY488464KY488468rhizosphericactionfungimg/kg11treatmentsrespectivelyoverexpressedexceptFungiusuallyinvolveddegradation/deteriorationmanyanthropogenicwastesdueverseenzymesecretionsadaptivecapabilitiesstudyfivedominantfungalisolatedagedsitemixed100mgtogetherpentmushroomcompostSMCapplied5kg100%treatmentgrowJacq3monthsestablishdeductionsHalf-lifeefficiencyDEmadebasedanalyzedconcentrationsexperimentpresenceexpressionsphosphoesterasesopd-Acatechol2-dioxygenasesefk2stainsnigeratroroseuspurpurogenusYarrowialipolyticaflavusmorphologicalmolecularmethodsCombinedspeedinitiallydetectedconcentration45reduced2693423making797685938867%efficiencies29higher6096218best32354030%compared54affirmedpossessopdmoderatelyexpressedHoweverefkunder-expressedshowedmoderateexpressionworksuggestssynergisticassociationrootsremovelimitedtimeperiodcombinationlargescaleSynergisticrhizosphereγ-hexachlorocyclohexanecombinatorialplant-fungal

Similar Articles

Cited By