Sirtuin 3 Deficiency Accelerates Hypertensive Cardiac Remodeling by Impairing Angiogenesis.

Tong Wei, Gaojian Huang, Jing Gao, Chenglin Huang, Mengwei Sun, Jian Wu, Juan Bu, Weili Shen
Author Information
  1. Tong Wei: State Key Laboratory of Medical Genomics, Shanghai Key Laboratory of Hypertension, Department of Hypertension Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China wlshen@sibs.ac.cn.
  2. Gaojian Huang: State Key Laboratory of Medical Genomics, Shanghai Key Laboratory of Hypertension, Department of Hypertension Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China.
  3. Jing Gao: State Key Laboratory of Medical Genomics, Shanghai Key Laboratory of Hypertension, Department of Hypertension Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China.
  4. Chenglin Huang: State Key Laboratory of Medical Genomics, Shanghai Key Laboratory of Hypertension, Department of Hypertension Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China.
  5. Mengwei Sun: Key Laboratory of State General Administration of Sport, Shanghai Research Institute of Sports Science, Shanghai, China.
  6. Jian Wu: Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital and Institutes of Biomedical Sciences, Fudan University, Shanghai, China.
  7. Juan Bu: Department of Macromolecular Science, State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai, China.
  8. Weili Shen: State Key Laboratory of Medical Genomics, Shanghai Key Laboratory of Hypertension, Department of Hypertension Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China.

Abstract

BACKGROUND: Emerging evidence indicates that impaired angiogenesis may contribute to hypertension-induced cardiac remodeling. The nicotinamide adenine dinucleotide-dependent deacetylase Sirtuin 3 (SIRT3) has the potential to modulate angiogenesis, but this has not been confirmed. As such, the aim of this study was to examine the relationship between SIRT3-mediated angiogenesis and cardiac remodeling.
METHODS AND RESULTS: Our experiments were performed on SIRT3 knockout and age-matched wild-type mice infused with angiotensin II (1400 ng/kg per minute) or saline for 14 days. After angiotensin II infusion, SIRT3 knockout mice developed more severe microvascular rarefaction and functional hypoxia in cardiac tissues compared with wild-type mice. These events were concomitant with mitochondrial dysfunction and enhanced collagen I and collagen III expression, leading to cardiac fibrosis. Silencing SIRT3 facilitated angiotensin II-induced aberrant Pink/Parkin acetylation and impaired mitophagy, while excessive mitochondrial reactive oxygen species generation limited angiogenic capacity in primary mouse cardiac microvascular endothelial cells. Moreover, SIRT3 overexpression in cardiac microvascular endothelial cells enhanced Pink/Parkin-mediated mitophagy, attenuated mitochondrial reactive oxygen species generation, and restored vessel sprouting and tube formation. In parallel, endothelial cell-specific SIRT3 transgenic mice showed decreased fibrosis, as well as improved cardiac function and microvascular network, compared with wild-type mice with similar stimuli.
CONCLUSIONS: Collectively, these findings suggest that SIRT3 could promote angiogenesis through attenuating mitochondrial dysfunction caused by defective mitophagy.

Keywords

References

  1. Free Radic Biol Med. 2013 Feb;55:73-82 [PMID: 23195684]
  2. J Pathol. 2016 Nov;240(3):253-255 [PMID: 27453450]
  3. J Am Heart Assoc. 2012 Dec;1(6):e006114 [PMID: 23316334]
  4. Proc Natl Acad Sci U S A. 2001 May 8;98(10):5780-5 [PMID: 11331753]
  5. Arterioscler Thromb Vasc Biol. 2015 Jun;35(6):1413-22 [PMID: 25908761]
  6. Hypertension. 2014 Mar;63(3):500-6 [PMID: 24396022]
  7. Hypertension. 2007 Mar;49(3):401-7 [PMID: 17242305]
  8. Oncotarget. 2016 Jul 12;7(28):43390-43400 [PMID: 27270321]
  9. J Mol Cell Cardiol. 2013 Dec;65:9-18 [PMID: 24095877]
  10. J Am Heart Assoc. 2015 Feb 24;4(2):null [PMID: 25713289]
  11. Science. 2015 Dec 4;350(6265):aad2459 [PMID: 26785495]
  12. Circ Res. 2014 Jan 31;114(3):565-71 [PMID: 24481846]
  13. J Hum Hypertens. 2009 Dec;23(12):773-82 [PMID: 19675586]
  14. Methods Enzymol. 2008;444:271-84 [PMID: 19007669]
  15. J Hypertens. 2011 Feb;29(2):266-72 [PMID: 21045736]
  16. Physiol Rev. 2012 Jul;92(3):1479-514 [PMID: 22811431]
  17. Mol Cells. 2013 Jun;35(6):474-80 [PMID: 23661364]
  18. Oncotarget. 2016 Oct 25;7(43):69321-69336 [PMID: 27732568]
  19. Mol Cell Biol. 2007 Dec;27(24):8807-14 [PMID: 17923681]
  20. Nat Commun. 2014 Jul 24;5:4514 [PMID: 25058378]
  21. Arterioscler Thromb Vasc Biol. 2013 Aug;33(8):1920-7 [PMID: 23723366]
  22. Basic Res Cardiol. 2015;110(4):36 [PMID: 25962702]
  23. J Cell Mol Med. 2015 Jan;19(1):53-61 [PMID: 25311234]
  24. J Clin Invest. 2009 Sep;119(9):2758-71 [PMID: 19652361]
  25. Biochim Biophys Acta. 2017 Aug;1863(8):1973-1983 [PMID: 27794418]
  26. Sci Rep. 2016 Mar 22;6:23366 [PMID: 27000941]
  27. Nat Rev Mol Cell Biol. 2011 Jan;12(1):9-14 [PMID: 21179058]
  28. Aging (Albany NY). 2010 Dec;2(12):914-23 [PMID: 21212461]
  29. Microsc Res Tech. 2013 Oct;76(10):1057-69 [PMID: 23913635]
  30. Am J Physiol Regul Integr Comp Physiol. 2008 Nov;295(5):R1512-8 [PMID: 18768771]
  31. Hypertension. 2006 May;47(5):887-93 [PMID: 16567591]
  32. Neuron. 2015 Jan 21;85(2):257-73 [PMID: 25611507]
  33. J Clin Invest. 2005 Aug;115(8):2108-18 [PMID: 16075055]
  34. J Mol Cell Cardiol. 2015 Sep;86:199-207 [PMID: 26241844]
  35. Physiol Genomics. 2006 Oct 3;27(1):20-8 [PMID: 17018690]
  36. Cardiovasc Drugs Ther. 2013 Dec;27(6):521-30 [PMID: 23887740]
  37. Biochem Biophys Res Commun. 2017 Jan 8;482(2):341-345 [PMID: 27856259]
  38. J Electron Microsc (Tokyo). 2006 Jun;55(3):151-5 [PMID: 16775217]
  39. BMC Cardiovasc Disord. 2015 Jul 30;15:81 [PMID: 26223796]
  40. Circ Cardiovasc Imaging. 2012 Jul;5(4):518-24 [PMID: 22679058]
  41. Microsc Res Tech. 2013 Feb;76(2):184-95 [PMID: 23180425]
  42. Cell Death Differ. 2010 Jun;17 (6):962-74 [PMID: 20057503]
  43. Transl Stroke Res. 2012 Jul;3(Suppl 1):174-9 [PMID: 24323868]

MeSH Term

Acetylation
Angiotensin II
Animals
Cardiomegaly
Cells, Cultured
Collagen Type I
Collagen Type III
Disease Models, Animal
Disease Progression
Fibrosis
Genetic Predisposition to Disease
Hypertension
Mice, 129 Strain
Mice, Knockout
Mitochondria, Heart
Mitophagy
Myocardium
Neovascularization, Physiologic
Oxidative Stress
Phenotype
Protein Kinases
Signal Transduction
Sirtuin 3
Time Factors
Tissue Culture Techniques
Ubiquitin-Protein Ligases
Ventricular Remodeling

Chemicals

Collagen Type I
Collagen Type III
Sirt3 protein, mouse
Angiotensin II
Ubiquitin-Protein Ligases
parkin protein
Protein Kinases
PTEN-induced putative kinase
Sirtuin 3

Word Cloud

Created with Highcharts 10.0.0cardiacSIRT3angiogenesismicemicrovascularmitochondrialmitophagyremodelingSirtuin3wild-typeangiotensinendothelialimpairedknockoutIIcompareddysfunctionenhancedcollagenfibrosisreactiveoxygenspeciesgenerationcellsBACKGROUND:Emergingevidenceindicatesmaycontributehypertension-inducednicotinamideadeninedinucleotide-dependentdeacetylasepotentialmodulateconfirmedaimstudyexaminerelationshipSIRT3-mediatedMETHODSANDRESULTS:experimentsperformedage-matchedinfused1400 ng/kgperminutesaline14 daysinfusiondevelopedsevererarefactionfunctionalhypoxiatissueseventsconcomitantIIIexpressionleadingSilencingfacilitatedII-inducedaberrantPink/ParkinacetylationexcessivelimitedangiogeniccapacityprimarymouseMoreoveroverexpressionPink/Parkin-mediatedattenuatedrestoredvesselsproutingtubeformationparallelcell-specifictransgenicshoweddecreasedwellimprovedfunctionnetworksimilarstimuliCONCLUSIONS:CollectivelyfindingssuggestpromoteattenuatingcauseddefectiveDeficiencyAcceleratesHypertensiveCardiacRemodelingImpairingAngiogenesismitochondriaoxidativestress

Similar Articles

Cited By