Neural and metabolic basis of dynamic resting state fMRI.

Garth J Thompson
Author Information
  1. Garth J Thompson: iHuman Institute, ShanghaiTech University, Shanghai 201210, China. Electronic address: contact@garththompson.com.

Abstract

Resting state fMRI (rsfMRI) as a technique showed much initial promise for use in psychiatric and neurological diseases where diagnosis and treatment were difficult. To realize this promise, many groups have moved towards examining "dynamic rsfMRI," which relies on the assumption that rsfMRI measurements on short time scales remain relevant to the underlying neural and metabolic activity. Many dynamic rsfMRI studies have demonstrated differences between clinical or behavioral groups beyond what static rsfMRI measured, suggesting a neurometabolic basis. Correlative studies combining dynamic rsfMRI and other physiological measurements have supported this. However, they also indicate multiple mechanisms and, if using correlation alone, it is difficult to separate cause and effect. Hypothesis-driven studies are needed, a few of which have begun to illuminate the underlying neurometabolic mechanisms that shape observed differences in dynamic rsfMRI. While the number of potential noise sources, potential actual neurometabolic sources, and methodological considerations can seem overwhelming, dynamic rsfMRI provides a rich opportunity in systems neuroscience. Even an incrementally better understanding of the neurometabolic basis of dynamic rsfMRI would expand rsfMRI's research and clinical utility, and the studies described herein take the first steps on that path forward.

References

  1. Neuroimage. 2016 Feb 15;127:324-332 [PMID: 26712339]
  2. PLoS One. 2010 Oct 13;5(10):e13311 [PMID: 20967203]
  3. J Magn Reson Imaging. 2010 Sep;32(3):584-92 [PMID: 20815055]
  4. J Neurosci. 2011 Feb 16;31(7):2607-14 [PMID: 21325528]
  5. J Cereb Blood Flow Metab. 2016 Jun;36(6):1033-45 [PMID: 26690495]
  6. Front Hum Neurosci. 2015 Nov 23;9:631 [PMID: 26635584]
  7. Philos Trans A Math Phys Eng Sci. 2016 May 13;374(2067): [PMID: 27044987]
  8. Nature. 2008 Jun 12;453(7197):869-78 [PMID: 18548064]
  9. J Cogn Neurosci. 2004 Nov;16(9):1484-92 [PMID: 15601513]
  10. Neuron. 2013 Mar 20;77(6):1136-50 [PMID: 23522048]
  11. Proc Natl Acad Sci U S A. 2003 Sep 16;100(19):11053-8 [PMID: 12958209]
  12. J Cereb Blood Flow Metab. 2016 May;36(5):903-16 [PMID: 26755443]
  13. Neuroimage Clin. 2014 Jul 24;5:298-308 [PMID: 25161896]
  14. Neurosci Biobehav Rev. 2017 Mar;74(Pt A):233-255 [PMID: 28057463]
  15. Neuroimage. 2012 Aug 15;62(2):985-94 [PMID: 22542993]
  16. Proc Natl Acad Sci U S A. 2007 Nov 13;104(46):18265-9 [PMID: 17991778]
  17. Front Neurosci. 2016 Nov 10;10:515 [PMID: 27891073]
  18. J Neurosci. 2013 Jul 3;33(27):11239-52 [PMID: 23825427]
  19. Neuroimage. 2014 Oct 15;100:471-80 [PMID: 24973603]
  20. Neuroimage. 2009 Feb 1;44(3):893-905 [PMID: 18976716]
  21. Proc Natl Acad Sci U S A. 2002 Aug 6;99(16):10771-6 [PMID: 12134057]
  22. Neuroimage. 2017 Feb 1;146:959-970 [PMID: 27746386]
  23. Front Neuroanat. 2012 Jul 26;6:29 [PMID: 22855672]
  24. J Neurosci. 2014 Jan 8;34(2):356-62 [PMID: 24403137]
  25. Clin Neurophysiol. 2003 Sep;114(9):1744-54 [PMID: 12948805]
  26. Neuron. 2014 May 7;82(3):695-708 [PMID: 24811386]
  27. Brain Connect. 2015 Feb;5(1):10-22 [PMID: 24702200]
  28. Neuroimage. 2015 Jul 1;114:185-98 [PMID: 25804643]
  29. Neuroimage. 2015 May 1;111:476-88 [PMID: 25662866]
  30. Am J Psychiatry. 2007 Mar;164(3):450-7 [PMID: 17329470]
  31. Cereb Cortex. 2017 Oct 1;27(10):4719-4732 [PMID: 27591147]
  32. Neuroimage. 2014 Nov 15;102 Pt 2:498-509 [PMID: 25128711]
  33. Neuroimage. 2009 May 1;45(4):1080-9 [PMID: 19344685]
  34. NMR Biomed. 2014 Mar;27(3):291-303 [PMID: 24449532]
  35. Front Neurol. 2015 Feb 16;6:10 [PMID: 25762977]
  36. Neuron. 2014 Oct 22;84(2):262-74 [PMID: 25374354]
  37. Proc Natl Acad Sci U S A. 2010 Mar 30;107(13):6040-5 [PMID: 20304792]
  38. J Neurosci. 2016 Apr 13;36(15):4377-88 [PMID: 27076432]
  39. Brain Connect. 2015 Apr;5(3):137-46 [PMID: 25384681]
  40. PLoS One. 2014 Sep 05;9(9):e106636 [PMID: 25191704]
  41. Neuroimage. 2012 Aug 1;62(1):394-407 [PMID: 22569542]
  42. Neuroimage. 2008 Apr 1;40(2):644-654 [PMID: 18234517]
  43. Hum Brain Mapp. 2014 Apr;35(4):1761-78 [PMID: 23671011]
  44. Neuroimage. 2013 Nov 1;81:243-252 [PMID: 23684872]
  45. Neuroimage. 2013 Feb 15;67:331-43 [PMID: 23153969]
  46. Neuroimage. 2007 Jun;36(2):269-76 [PMID: 17113313]
  47. Front Comput Neurosci. 2015 Feb 12;9:11 [PMID: 25729360]
  48. Nat Neurosci. 2006 Jul;9(7):971-8 [PMID: 16767087]
  49. Brain Struct Funct. 2016 Jul;221(6):2985-97 [PMID: 26197763]
  50. Brain Connect. 2015 Feb;5(1):45-59 [PMID: 25014419]
  51. Front Neurosci. 2015 Dec 22;9:454 [PMID: 26733778]
  52. Front Hum Neurosci. 2012 Dec 28;6:339 [PMID: 23293596]
  53. MAGMA. 2010 Dec;23(5-6):351-66 [PMID: 20162320]
  54. PLoS One. 2014 Jun 30;9(6):e100012 [PMID: 24979748]
  55. Neuroimage. 2017 Oct 15;160:97-112 [PMID: 28126550]
  56. Brain Struct Funct. 2016 Jun;221(5):2801-15 [PMID: 26077581]
  57. Front Hum Neurosci. 2014 Nov 07;8:897 [PMID: 25426048]
  58. Nat Methods. 2012 Jun;9(6):597-602 [PMID: 22561989]
  59. Brain Struct Funct. 2014 Nov;219(6):2001-15 [PMID: 23913255]
  60. Front Syst Neurosci. 2013 Jul 26;7:34 [PMID: 23898240]
  61. Hum Brain Mapp. 2014 Nov;35(11):5442-56 [PMID: 24989126]
  62. Sci Rep. 2014 Dec 09;4:7376 [PMID: 25488025]
  63. Neuroimage. 2017 Jul 15;155:331-343 [PMID: 28323164]
  64. Neuron. 2010 Jan 28;65(2):280-90 [PMID: 20152133]
  65. Brain Topogr. 2018 Jan;31(1):101-116 [PMID: 28229308]
  66. J Biomed Opt. 2015 Aug;20(8):86012 [PMID: 26296233]
  67. Hum Brain Mapp. 2013 Dec;34(12):3280-98 [PMID: 22736565]
  68. J Cogn Neurosci. 2017 Mar;29(3):495-506 [PMID: 27779908]
  69. Neuroimage. 2009 Apr 15;45(3):694-701 [PMID: 19280693]
  70. Brain Connect. 2015 Nov;5(9):527-42 [PMID: 26106930]
  71. Front Neurol. 2014 Sep 11;5:175 [PMID: 25309503]
  72. PLoS One. 2017 Feb 13;12(2):e0171647 [PMID: 28192457]
  73. Neuroimage. 2014 Nov 1;101:531-46 [PMID: 24993894]
  74. Brain Connect. 2014 Nov;4(9):727-40 [PMID: 25300278]
  75. Hum Brain Mapp. 2005 Dec;26(4):231-9 [PMID: 15954139]
  76. Brain Connect. 2016 Dec;6(10):786-794 [PMID: 27527402]
  77. J Neurosci. 2011 Aug 10;31(32):11728-32 [PMID: 21832202]
  78. Proc Natl Acad Sci U S A. 2013 Sep 10;110(37):15115-20 [PMID: 23980158]
  79. Proc Natl Acad Sci U S A. 2007 Nov 20;104(47):18760-5 [PMID: 18003904]
  80. Hum Brain Mapp. 2017 Sep;38(9):4479-4496 [PMID: 28603919]
  81. Proc Natl Acad Sci U S A. 2015 Apr 28;112(17):E2235-44 [PMID: 25825720]
  82. J Neurosci. 2009 Oct 21;29(42):13410-7 [PMID: 19846728]
  83. J Neurophysiol. 2015 Sep;114(3):1353-6 [PMID: 25376788]
  84. J R Soc Interface. 2016 Jan;13(114):20151027 [PMID: 26819336]
  85. Neuroimage. 2012 Feb 1;59(3):2994-3002 [PMID: 22032947]
  86. Neuroimage. 2010 Mar;50(1):81-98 [PMID: 20006716]
  87. Neuroimage. 2013 Jan 15;65:216-22 [PMID: 23069810]
  88. Proc Natl Acad Sci U S A. 2007 Dec 18;104(51):20546-51 [PMID: 18079290]
  89. Hum Brain Mapp. 2013 Sep;34(9):2078-88 [PMID: 22461234]
  90. Brain Connect. 2014 Nov;4(9):677-89 [PMID: 25131996]
  91. Neuroimage. 2011 Jan 15;54(2):1140-50 [PMID: 20728554]
  92. Neuroimage. 2016 Jan 1;124(Pt A):367-378 [PMID: 26363345]
  93. Curr Biol. 2015 May 18;25(10):1368-74 [PMID: 25936551]
  94. Brain Connect. 2011;1(2):119-31 [PMID: 22433008]
  95. Hum Brain Mapp. 2017 Feb;38(2):957-973 [PMID: 27726245]
  96. J Neurosci Methods. 2016 Aug 30;269:61-73 [PMID: 27129446]
  97. Neuroimage. 2013 May 15;72:227-36 [PMID: 23376790]
  98. Prog Neurobiol. 2010 Dec;92(4):593-600 [PMID: 20888388]
  99. Biomed Opt Express. 2016 Feb 23;7(3):979-1002 [PMID: 27231602]
  100. Proc Natl Acad Sci U S A. 2008 Apr 22;105(16):6173-8 [PMID: 18427123]
  101. Cereb Cortex. 2008 Oct;18(10):2374-81 [PMID: 18267952]
  102. Brain Topogr. 2017 Sep;30(5):639-655 [PMID: 28194612]
  103. Neuroimage. 2015 May 15;112:169-179 [PMID: 25765256]
  104. Neuroimage. 2015 Jan 1;104:89-99 [PMID: 25315787]
  105. Brain Connect. 2015 Feb;5(1):35-44 [PMID: 24901036]
  106. Neuroimage. 2014 Apr 15;90:196-206 [PMID: 24418507]
  107. Curr Opin Neurobiol. 2007 Apr;17(2):161-70 [PMID: 17379500]
  108. Neuroimage. 2007 Nov 1;38(2):306-20 [PMID: 17869543]
  109. Neuroimage. 2011 Jun 15;56(4):2109-28 [PMID: 21396454]
  110. Clin Neurophysiol. 2005 Jan;116(1):1-8 [PMID: 15589176]
  111. Brain Connect. 2011;1(4):339-47 [PMID: 22432423]
  112. Neuroimage. 2016 Feb 15;127:242-256 [PMID: 26631813]
  113. Neuron. 2012 Dec 6;76(5):1010-20 [PMID: 23217748]
  114. Neuroimage. 2013 Jul 1;74:288-97 [PMID: 23481462]
  115. Brain Connect. 2017 Jun;7(5):265-280 [PMID: 28462586]
  116. Neuroimage. 2016 Jun;133:111-128 [PMID: 26952197]
  117. Magn Reson Med. 1995 Oct;34(4):537-41 [PMID: 8524021]
  118. PLoS One. 2015 Jun 25;10(6):e0131209 [PMID: 26110431]
  119. Front Hum Neurosci. 2013 Aug 06;7:440 [PMID: 23964222]
  120. Brain Connect. 2016 Jul;6(6):435-47 [PMID: 27029438]
  121. Proc Natl Acad Sci U S A. 2013 Jan 29;110(5):1929-34 [PMID: 23319644]
  122. PLoS One. 2015 Apr 07;10(4):e0123354 [PMID: 25848951]
  123. Front Hum Neurosci. 2015 Jul 16;9:418 [PMID: 26236224]
  124. Neuroreport. 2014 Dec 3;25(17):1344-9 [PMID: 25275678]
  125. Neuroimage. 2014 May 1;91:162-8 [PMID: 24434676]
  126. Proc Natl Acad Sci U S A. 2007 Jun 12;104(24):10240-5 [PMID: 17548818]
  127. Magn Reson Imaging. 2017 Feb;36:56-67 [PMID: 27751859]
  128. NMR Biomed. 2013 Jul;26(7):803-9 [PMID: 23355411]
  129. Neuroimage. 2013 Mar;68:93-104 [PMID: 23246859]
  130. PLoS One. 2016 May 05;11(5):e0154936 [PMID: 27148970]
  131. Front Neurosci. 2014 Aug 28;8:258 [PMID: 25221467]
  132. J Neurophysiol. 2003 Apr;89(4):2208-14 [PMID: 12612037]
  133. Neuroimage. 2017 Oct 15;160:84-96 [PMID: 28343985]
  134. Neuroimage. 2012 Apr 2;60(2):1448-61 [PMID: 22285693]
  135. Neuroimage. 2016 Sep;138:147-163 [PMID: 27177763]
  136. Proc Natl Acad Sci U S A. 2009 Jan 27;106(4):1279-84 [PMID: 19164577]
  137. J Cogn Neurosci. 2016 Mar;28(3):379-401 [PMID: 26679214]
  138. Front Integr Neurosci. 2014 May 27;8:41 [PMID: 24904325]
  139. Neuropsychopharmacology. 2016 Jun;41(7):1822-30 [PMID: 26632990]
  140. Neuroimage. 2014 Jan 1;84:672-80 [PMID: 24099842]
  141. Front Physiol. 2012 Feb 08;3:15 [PMID: 22347863]
  142. Biomed Opt Express. 2015 Jun 05;6(7):2337-52 [PMID: 26203365]
  143. Neuroimage. 2013 Dec;83:983-90 [PMID: 23899724]
  144. Neuroimage. 2015 Jan 1;104:430-6 [PMID: 25234118]
  145. Hum Brain Mapp. 2013 Sep;34(9):2154-77 [PMID: 22438275]
  146. PLoS One. 2016 Mar 16;11(3):e0149849 [PMID: 26981625]
  147. Proc Natl Acad Sci U S A. 2008 Oct 14;105(41):16039-44 [PMID: 18843113]
  148. Hum Brain Mapp. 2014 Oct;35(10):5262-78 [PMID: 24861961]
  149. IEEE Trans Biomed Eng. 2016 Dec;63(12):2540-2549 [PMID: 27541328]
  150. Proc Natl Acad Sci U S A. 2013 Aug 13;110(33):13642-7 [PMID: 23898179]
  151. Brain Connect. 2016 Jun;6(5):403-14 [PMID: 26973154]
  152. Neuroimage. 2013 Dec;83:826-36 [PMID: 23876248]
  153. PLoS One. 2016 Apr 26;11(4):e0154407 [PMID: 27116610]
  154. BMC Neurol. 2015 Dec 21;15:262 [PMID: 26689596]
  155. Hum Brain Mapp. 2008 Jul;29(7):751-61 [PMID: 18465799]
  156. Neuroimage. 2017 Jul 1;154:267-281 [PMID: 28017922]
  157. J Magn Reson Imaging. 2009 Aug;30(2):384-93 [PMID: 19629982]
  158. Cereb Cortex. 2017 Nov 1;27(11):5415-5429 [PMID: 28968754]
  159. Proc Natl Acad Sci U S A. 2014 Oct 28;111(43):E4677-86 [PMID: 25313035]
  160. Proc Natl Acad Sci U S A. 2016 Aug 23;113(34):9653-8 [PMID: 27512040]
  161. Magn Reson Med. 1999 Nov;42(5):849-63 [PMID: 10542343]
  162. Schizophr Res. 2016 Jan;170(1):55-65 [PMID: 26654933]
  163. Neuroimage. 2016 Nov 15;142:198-210 [PMID: 27261162]
  164. Brain Connect. 2013;3(1):31-40 [PMID: 23106103]
  165. Proc Natl Acad Sci U S A. 2015 May 12;112(19):E2527-35 [PMID: 25918427]
  166. Neuroimage. 2013 Nov 1;81:110-118 [PMID: 23684866]
  167. Front Neurosci. 2015 Aug 05;9:269 [PMID: 26300718]
  168. Proc Natl Acad Sci U S A. 2015 Jan 20;112(3):887-92 [PMID: 25561541]
  169. Neuroimage. 2015 Oct 15;120:133-42 [PMID: 26162552]
  170. Brain Connect. 2014 Nov;4(9):741-59 [PMID: 25163490]
  171. Front Hum Neurosci. 2016 Aug 23;10:411 [PMID: 27601986]
  172. Cereb Cortex. 2007 Oct;17(10):2407-19 [PMID: 17204824]
  173. Brain Connect. 2011;1(1):3-12 [PMID: 22432951]
  174. Brain Imaging Behav. 2016 Jun;10(2):342-56 [PMID: 26123390]
  175. Front Neural Circuits. 2016 Dec 27;10:107 [PMID: 28082871]
  176. Proc Natl Acad Sci U S A. 2002 Aug 6;99(16):10765-70 [PMID: 12134056]
  177. Proc Natl Acad Sci U S A. 2007 Aug 7;104(32):13170-5 [PMID: 17670949]
  178. J Neurophysiol. 2015 Jul;114(1):114-24 [PMID: 26041826]
  179. Proc Natl Acad Sci U S A. 2015 Jul 14;112(28):8762-7 [PMID: 26124112]
  180. Neuroimage. 2012 Feb 1;59(3):2142-54 [PMID: 22019881]
  181. Neuroimage. 2014 Jan 1;84:1018-31 [PMID: 24071524]
  182. PLoS One. 2012;7(6):e39731 [PMID: 22761880]
  183. Proc Natl Acad Sci U S A. 2007 Jul 17;104(29):12187-92 [PMID: 17616583]
  184. Brain Struct Funct. 2015 Jan;220(1):37-46 [PMID: 25713839]
  185. Proc Natl Acad Sci U S A. 2004 Mar 30;101(13):4637-42 [PMID: 15070770]
  186. Neuroimage. 2010 Oct 1;52(4):1162-70 [PMID: 20188188]
  187. Proc Natl Acad Sci U S A. 2015 Jul 7;112(27):8463-8 [PMID: 26106164]
  188. J Neurosci. 2012 Jan 25;32(4):1395-407 [PMID: 22279224]
  189. Neuroimage. 2018 Oct 15;180(Pt B):646-656 [PMID: 28669905]
  190. Neuroimage. 2015 Feb 15;107:345-355 [PMID: 25514514]
  191. Cereb Cortex. 2014 Mar;24(3):663-76 [PMID: 23146964]
  192. Brain Connect. 2014 Dec;4(10):769-79 [PMID: 24975024]
  193. Brain Connect. 2017 Feb;7(1):1-12 [PMID: 27846731]
  194. Brain Connect. 2014 Feb;4(1):15-29 [PMID: 24117343]
  195. Proc Natl Acad Sci U S A. 2010 Jun 1;107(22):10238-43 [PMID: 20439733]
  196. Hum Brain Mapp. 2014 Dec;35(12):5754-75 [PMID: 25044934]
  197. Med Image Comput Comput Assist Interv. 2014;17(Pt 3):177-84 [PMID: 25320797]
  198. J Neurosci. 2003 Dec 3;23(35):11167-77 [PMID: 14657176]
  199. Neuroimage. 2006 Mar;30(1):203-13 [PMID: 16290018]
  200. J Neurosci. 2013 Apr 10;33(15):6333-42 [PMID: 23575832]
  201. Front Behav Neurosci. 2015 Sep 04;9:244 [PMID: 26388754]
  202. AJNR Am J Neuroradiol. 2000 Oct;21(9):1636-44 [PMID: 11039342]
  203. J Cereb Blood Flow Metab. 2014 Oct;34(10):1599-603 [PMID: 25099754]
  204. J Neurosci. 2012 Aug 15;32(33):11176-86 [PMID: 22895703]
  205. Neuron. 2013 Jun 19;78(6):1116-26 [PMID: 23791200]
  206. Neuroimage. 2013 Oct 15;80:360-78 [PMID: 23707587]
  207. Brain Imaging Behav. 2015 Dec;9(4):854-67 [PMID: 25563228]
  208. Proc Natl Acad Sci U S A. 2013 Mar 12;110(11):4392-7 [PMID: 23440216]
  209. Front Hum Neurosci. 2015 Sep 04;9:478 [PMID: 26388757]

Grants

  1. P30 NS052519/NINDS NIH HHS
  2. T32 DA022975/NIDA NIH HHS

MeSH Term

Brain
Connectome
Humans
Magnetic Resonance Imaging
Neural Pathways
Rest

Word Cloud

Created with Highcharts 10.0.0rsfMRIdynamicstudiesneurometabolicbasisstatefMRIpromisedifficultgroupsmeasurementsunderlyingmetabolicdifferencesclinicalmechanismspotentialsourcesRestingtechniqueshowedmuchinitialusepsychiatricneurologicaldiseasesdiagnosistreatmentrealizemanymovedtowardsexamining"dynamic"reliesassumptionshorttimescalesremainrelevantneuralactivityManydemonstratedbehavioralbeyondstaticmeasuredsuggestingCorrelativecombiningphysiologicalsupportedHoweveralsoindicatemultipleusingcorrelationaloneseparatecauseeffectHypothesis-drivenneededbegunilluminateshapeobservednumbernoiseactualmethodologicalconsiderationscanseemoverwhelmingprovidesrichopportunitysystemsneuroscienceEvenincrementallybetterunderstandingexpandrsfMRI'sresearchutilitydescribedhereintakefirststepspathforwardNeuralresting

Similar Articles

Cited By