The dosage-dependent effect exerted by the NM23-H1/H2 homolog NDK-1 on distal tip cell migration in C. elegans.

Zsolt Farkas, Luca Fancsalszky, Éva Saskői, Alexandra Gráf, Krisztián Tárnok, Anil Mehta, Krisztina Takács-Vellai
Author Information
  1. Zsolt Farkas: Department of Biological Anthropology, ELTE Eötvös Loránd University, Budapest, Hungary.
  2. Luca Fancsalszky: Department of Genetics, ELTE Eötvös Loránd University, Budapest, Hungary.
  3. Éva Saskői: Department of Genetics, ELTE Eötvös Loránd University, Budapest, Hungary.
  4. Alexandra Gráf: Department of Genetics, ELTE Eötvös Loránd University, Budapest, Hungary.
  5. Krisztián Tárnok: Department of Physiology and Neurobiology, ELTE Eötvös Loránd University, Budapest, Hungary.
  6. Anil Mehta: Division of Medical Sciences, Ninewells Hospital Medical School, Dundee, UK.
  7. Krisztina Takács-Vellai: Department of Biological Anthropology, ELTE Eötvös Loránd University, Budapest, Hungary.

Abstract

Abnormal regulation of cell migration and altered rearrangement of the cytoskeleton are fundamental properties of metastatic cells. The first identified metastasis suppressor NM23-H1, which displays nucleoside-diphosphate kinase (NDPK) activity is involved in these processes. NM23-H1 inhibits the migratory and invasive potential of some cancer cells. Correspondingly, numerous invasive cancer cell lines (eg, breast, colon, oral, hepatocellular carcinoma, and melanoma) display low endogenous NM23 levels. In this review, we summarize mechanisms, which are linked to the anti-metastatic activity of NM23. In human cancer cell lines NM23-H1 was shown to regulate cytoskeleton dynamics through inactivation of Rho/Rac-type GTPases. The Drosophila melanogaster NM23 homolog abnormal wing disc (AWD) controls tracheal and border cell migration. The molecular function of AWD is well characterized in both processes as a GTP supplier of Shi/Dynamin whereby AWD regulates the level of chemotactic receptors on the surface of migrating cells through receptor internalization, by its endocytic function. Our group studied the role of the sole group I NDPK, NDK-1 in distal tip cell (DTC) migration in Caenorhabditis elegans. In the absence of NDK-1 the migration of DTCs is incomplete. A half dosage of NDPK as present in NDK-1 (+/-) heterozygotes results in extra turns and overshoots of migrating gonad arms. Conversely, an elevated NDPK level also leads to incomplete gonadal migration owing to a premature stop of DTCs in the third phase of migration, where NDK-1 acts. We propose that NDK-1 exerts a dosage-dependent effect on the migration of DTCs. Our data derived from DTC migration in C. elegans is consistent with data on AWD's function in Drosophila. The combined data suggest that NDPK enzymes control the availability of surface receptors to regulate cell-sensing cues during cell migration. The dosage of NDPKs may be a coupling factor in cell migration by modulating the efficiency of receptor recycling.

References

  1. Development. 2003 Aug;130(15):3469-78 [PMID: 12810594]
  2. Int J Cancer. 2011 Jan 1;128(1):40-50 [PMID: 20209495]
  3. Dev Biol. 1988 Sep;129(1):169-78 [PMID: 2842208]
  4. Development. 2008 Jun;135(12):2055-64 [PMID: 18480161]
  5. PLoS One. 2011;6(10):e26024 [PMID: 21991393]
  6. Int J Mol Med. 1998 Jul;2(1):65-8 [PMID: 9854145]
  7. Clin Cancer Res. 1999 Dec;5(12):4301-7 [PMID: 10632374]
  8. Cell. 2001 Oct 5;107(1):17-26 [PMID: 11595182]
  9. Naunyn Schmiedebergs Arch Pharmacol. 2011 Oct;384(4-5):489-98 [PMID: 21553004]
  10. Cancer Res. 2010 Oct 1;70(19):7710-22 [PMID: 20841469]
  11. Cancer Res. 1995 May 1;55(9):1977-81 [PMID: 7728768]
  12. J Biol Chem. 2013 Jan 4;288(1):111-21 [PMID: 23150663]
  13. J Cancer Res Clin Oncol. 2002 Apr;128(4):189-96 [PMID: 11935309]
  14. Blood. 1998 Mar 15;91(6):1845-51 [PMID: 9490665]
  15. Wiley Interdiscip Rev Dev Biol. 2012 Jul-Aug;1(4):519-31 [PMID: 23559979]
  16. Development. 2005 Aug;132(15):3483-92 [PMID: 16000386]
  17. J Bioenerg Biomembr. 2003 Feb;35(1):73-9 [PMID: 12848344]
  18. J Biol Chem. 2002 Jan 11;277(2):1560-7 [PMID: 11694515]
  19. Taiwan J Obstet Gynecol. 2006 Jun;45(2):107-13 [PMID: 17197349]
  20. Development. 2013 Aug;140(16):3486-95 [PMID: 23900546]
  21. Genes Dev. 2003 Nov 15;17(22):2812-24 [PMID: 14630942]
  22. Biophys J. 2007 Jan 1;92(1):126-37 [PMID: 17028143]
  23. Cell. 1991 Apr 5;65(1):25-35 [PMID: 2013093]
  24. Curr Opin Genet Dev. 2001 Aug;11(4):457-63 [PMID: 11448633]
  25. APMIS. 2008 Jul-Aug;116(7-8):586-601 [PMID: 18834404]
  26. BMC Evol Biol. 2009 Oct 23;9:256 [PMID: 19852809]
  27. Mol Cell Biol. 2008 Mar;28(6):1964-73 [PMID: 18212059]
  28. Biochim Biophys Acta. 2009 Mar;1793(3):469-76 [PMID: 19146889]
  29. Naunyn Schmiedebergs Arch Pharmacol. 2011 Oct;384(4-5):363-72 [PMID: 21336542]
  30. Int J Cancer. 1995 Jan 17;60(2):204-10 [PMID: 7829217]
  31. Science. 1993 Jul 23;261(5120):478-80 [PMID: 8392752]
  32. Cell. 2003 Mar 7;112(5):659-72 [PMID: 12628186]
  33. PLoS One. 2015 Mar 13;10(3):e0118943 [PMID: 25768293]
  34. Int J Cancer. 1996 Oct 21;69(5):415-9 [PMID: 8900377]
  35. J Natl Cancer Inst. 1988 Apr 6;80(3):200-4 [PMID: 3346912]
  36. J Natl Cancer Inst. 2005 Jun 1;97(11):836-45 [PMID: 15928304]
  37. Mol Cell Biol. 2009 Sep;29(17):4679-90 [PMID: 19581292]
  38. J Cell Sci. 2006 Dec 1;119(Pt 23):4811-8 [PMID: 17090602]
  39. Semin Cell Dev Biol. 2014 Apr;28:70-7 [PMID: 24583474]
  40. Naunyn Schmiedebergs Arch Pharmacol. 2011 Oct;384(4-5):351-62 [PMID: 21713383]
  41. Naunyn Schmiedebergs Arch Pharmacol. 2011 Oct;384(4-5):421-31 [PMID: 21562815]
  42. Neural Dev. 2009 Jan 05;4:1 [PMID: 19123928]
  43. Sci Signal. 2009 Mar 10;2(61):pe13 [PMID: 19278958]
  44. Curr Opin Cell Biol. 2010 Oct;22(5):633-9 [PMID: 20739171]
  45. Nat Rev Mol Cell Biol. 2012 Oct;13(10):631-45 [PMID: 23000794]
  46. PLoS One. 2014 Mar 21;9(3):e92687 [PMID: 24658123]
  47. Cancer Res. 2007 Aug 1;67(15):7238-46 [PMID: 17671192]
  48. Nucleic Acids Res. 2009 Jan;37(1):172-83 [PMID: 19033359]
  49. Exp Cell Res. 2008 Aug 15;314(14):2702-14 [PMID: 18601920]
  50. Clin Cancer Res. 2008 Aug 15;14(16):5006-12 [PMID: 18698018]
  51. Proc Natl Acad Sci U S A. 2001 Apr 10;98(8):4385-90 [PMID: 11274357]
  52. Nature. 1989 Nov 9;342(6246):177-80 [PMID: 2509941]
  53. J Biol Chem. 2008 Sep 19;283(38):26198-207 [PMID: 18635542]
  54. Eur J Biochem. 1995 Nov 15;234(1):200-7 [PMID: 8529641]
  55. Cancer Lett. 2009 Mar 18;275(2):221-6 [PMID: 19022560]
  56. Genes Dev. 2007 Jul 1;21(13):1615-20 [PMID: 17606640]
  57. Oncogene. 1993 Sep;8(9):2325-33 [PMID: 8395676]
  58. Int J Oncol. 1994 Dec;5(6):1455-7 [PMID: 21559735]
  59. Cell Mol Life Sci. 2015 Apr;72(8):1447-62 [PMID: 25537302]
  60. Int J Cancer. 1996 Feb 8;65(4):531-7 [PMID: 8621239]
  61. J Bioenerg Biomembr. 2000 Jun;32(3):301-8 [PMID: 11768314]
  62. Int J Cancer. 2008 Aug 1;123(3):500-10 [PMID: 18470881]
  63. Science. 2014 Jun 27;344(6191):1510-5 [PMID: 24970086]
  64. Laryngoscope. 2015 Oct;125(10 ):2398-404 [PMID: 25827636]
  65. J Biol Chem. 2003 Jan 3;278(1):400-6 [PMID: 12393875]
  66. Neuron. 2001 Apr;30(1):197-210 [PMID: 11343655]

MeSH Term

Animals
Caenorhabditis elegans
Caenorhabditis elegans Proteins
Cell Movement
Heterozygote
Humans
Mutation
NM23 Nucleoside Diphosphate Kinases
Signal Transduction

Chemicals

Caenorhabditis elegans Proteins
NM23 Nucleoside Diphosphate Kinases

Word Cloud

Created with Highcharts 10.0.0migrationcellNDPKNDK-1cellsNM23-H1cancerNM23AWDfunctionelegansDTCsdatacytoskeletonactivityprocessesinvasivelinesregulateDrosophilahomologlevelreceptorssurfacemigratingreceptorgroupdistaltipDTCincompletedosagedosage-dependenteffectCAbnormalregulationalteredrearrangementfundamentalpropertiesmetastaticfirstidentifiedmetastasissuppressordisplaysnucleoside-diphosphatekinaseinvolvedinhibitsmigratorypotentialCorrespondinglynumerousegbreastcolonoralhepatocellularcarcinomamelanomadisplaylowendogenouslevelsreviewsummarizemechanismslinkedanti-metastatichumanshowndynamicsinactivationRho/Rac-typeGTPasesmelanogasterabnormalwingdisccontrolstrachealbordermolecularwellcharacterizedGTPsupplierShi/DynaminwherebyregulateschemotacticinternalizationendocyticstudiedrolesoleCaenorhabditisabsencehalfpresentndk-1+/-heterozygotesresultsextraturnsovershootsgonadarmsConverselyelevatedalsoleadsgonadalowingprematurestopthirdphaseactsproposeexertsderivedconsistentAWD'scombinedsuggestenzymescontrolavailabilitycell-sensingcuesNDPKsmaycouplingfactormodulatingefficiencyrecyclingexertedNM23-H1/H2

Similar Articles

Cited By (4)